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Abstract

This thesis investigates object interaction issues involved in developing an ehject-oriented
parallel discrete-event simulation and develops a simulation model that provides object interac-
tion capabilitics. The research covers issues in object representation. objeet interaction. object

management, discrete-event simulation, and parallel simulation.

There are three primary types of objects that, the research discusses. The first type is a basic
simulation object, whose size and behavior is insignificant compared to the size of the simulation as
a whole. The second type is an aggregate object which consists of smaller component objects that
interact and affect the performance of the larger object as a whole. Finally, thore are environmental

objects, such as terrain and weather, whose size and impact are significant to the entire simuiation

environment. This research addresses issues about whether these objects can be represented the

samie in the simuiation or whether a special case must exist for each type of object.

As a result of the research, a simulation model is designed that allows interaction between
simulation objects. The design goals used to develop the model were strict use of object-oriented
practices, case of simulation modification. and reusc across other applications in the same class of
simulations. In this case, the class of simulations is interacting objects in a spatially partitioned

discrete-event simulation.

The model is then implemented using AFIT's Battlesim program, which is a parallel discr~*~-
event simulation that has a battleficld divided into partitions and allows objects to move and

interact.




Object Interaction in a

Parallel Object-Oriented Discrete-Event Simulation

I. Background and Statement of the Problem

1.1 Introduction

This thesis investigates the application of object-oriented prog-amming to parallel computer
simulation. It specifically addresses the interaction between simulation objects in a parallel disctete-

event simulation environment.

The purpose of this chapter is to provide a background in the research area, define the
problem, and explain how the problem was approached. This chapter begins with a background of
the research topic and explains the problem that the research addresses. Then it gives a summary
of current knowledge of the problem and defines the scope of the study. Following this explanation
of the problem, the chapter addresses the standards that were used and the approach that was

followed.

1.2 Background

i.2.1 Object-Oriented Simulation. The current trend in simulation is to use object-
oriented techniques for modeling real-world objects and processes. These techniques are new to
parallel simulation, particularly in the areas of object management and object interaction. Object
management is the process of keeping track of the simulation objects and controlling their creation,
access, and destruction. Object interaction is the process of the objects communicating with each
other and reacting to the communication. This interaction can either be direct or through the

management of the simulation support system.




The technique of modeling a problem as a set objects and their relationship to each other
makes the object-oriented paradigm a good candidate for use in simulation because each object in
a simulation is a direct representation of a real-world objeci. One advantage of using the object-
oriented paradigm is that it usually results in the development of well-structured software. The
good program structure is a direct resuit of the use of object data encapsulation, which requires all
the information and program data for each object to be contained in one place. Well-structured
programs are much easier to maintain than programs that are poorly structured. Another advantage
of object-oriented programming in simulation is that it promotes reusability of software. Objects
that are defined for specific simulations may be reused in other simuiations that require the same

type of objects (3:195).

Like any other programming method, object-oriented programming requires the steps of anal-
ysis, design, and implementation. Object-oriented analysis is a well-defined process used to analyze
and define a system to be modeled. However. the decisions made during object-oriented design and
implementaticn will most significantly determisr.e the performance of the final application. Simple
object interaction is easily defined during the analysis stage. For example, Figure 1 shows the
simple object representatic.. and interaction between an airplane and a pilot. (omplex simulation
object interaction also can be shown in the same type of diagram, but it is not as easily desigued

and implemented in software,

The first type of interaction of objects addressed in this thesis is the interaction that takes
place conditionally between two or more simulation objects. An example of this multiple object

interaction is the collision between two separate vehicle objects.

The second type of interaction addressed is the interaction of moving objects with environ-

mental objects such as terrain or weather. An example of this type of interaction is an aircraft

colliding with terrain or terrain-following by a ground-based moving object.
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Figure 1. Object-oriented representation of an airplane and a pilot

The third type of interaction addressed is the interaction between parts of aggregate, or
complex, objects. A complex abject is an aggregation of smaller objects that interact to affect the
bebavior of the aggregate object as a whole. An example of a complex object in a battle simulation
would be an aircraft that consists of a fuel subsystem, an engine subsystem, and other components
the simulation modeler considers important enough to model. An example of the interaction at

this level would be the fuel subsystem telling the engine subsystem that there is no more fuel.

Designing an object interaction model for use on a paralle: computer introduces complica-
tions into the model that do not exist in sequential simulation. The designer must consider hot
the objects are to be distributed among the processors on the parallel computer. All aspects of
object interaction must be considered to best balance the prucessing load of each parallel processor
while trying to achieve a minimum level of cominunication between the processors. Minimization

of communication between the processors is important because the speed of the communication

channels between the processors is usually significantly slower that the computation speed of the

processors themselves.




1.2.2 Battlesim. The Air Force Institute of Technelogy t AFIT) paraliel battle simulation,
Battlesim, divides a simulation battlefield evenly among parallel processors so that each processor
is simulating one small part of the battleground. Figure 2 shows an example partitioning of a
simulation into eight sections. Each object in the simulation is assigned to the processor that is
simulating the part of the battlefield that corresponds to the object's current location. The main
problem with this technique as it applies to this research is that there is no well-defined method of
representing environment objects such as terrain or weather that have an effect on all the simulation
partitions. Three possible approaches to implementing environment objects in a parallel simulation
are to duplicate the entire envirenment object on each parallel processor, divide the environment
object into smaller parts and put the appropriate part on each processor, or to represen; it as single
object on a single processor and require communications between the processors to determine if

interactior exists. These three models are investigated in the course of this thesis.
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Figure 2. Example spatial partitioning of a simulation.




1.8 Problem

The current AFIT parallel battle simulation program, Battlesim, allows only simple interac-
tion between simple onjects such as the interaction between two aircraft. Currently, there is only
one type of simulation object that is affected by a given set of object interactions. More complex
interaction between objects is required in the program, as well as the ability to introduce other
types of objects to the simulation. The types of interaction that are required iuclude interaction
between simple simulation objects, interaction between simple objects and environment objects,

and interaction between the component parts of complex objects.

The purpose of this research is to address these three problems of object interaction and
how their solutions can be applied to the Battlesim program. The first problem involves modelling
the interaction between regular simulation objects. The second involves the problem of parallel
simulation of environment objects and their interaction with the other objects in the simulation.
Of specific concern is the interaction of vehicle objects with terrain, to include collision detection
and terrain following. The third problem is that of parallel simulation of complex objects. The
specific example examined is that of an aircraft, which consists of an aggregation of subsystems

that interact and have an effect on the performance of the overall aircrafi.

The goal of this thesis is to develop a model for use by the Joint Modelling and Simulation
System (J-MASS) Program. The current simulation capabilities of J-MASS allow the simulation
of radar transmissions, but plans exist to extend the capabilities of the simulation to aliow the

modeling of other applications.

1.4 Summary of Current Knowledge

The research efforts that participated in the evolution of the Battlesim program began in 1990
when Rizza developed a battle simulation program to simulate the battlefield environment {23). His

research consisted of modeling objects whose interaction consisted of the detection and reaction to




collisions with other moving objects. The algorithm that he used involved computing the accurrence
of a collision of an object in the simulation world by accessing a master object list and sequentially
checking the position and velocity of every other object in the simulatio. . This work did not include

parallel simulation of the battlefield.

In 1991 Moser developed a parallel simulation involving the collision of pool balls based on
the *Colliding Pucks’ problem researched at Cal Tech (18). In order to break the problem down
for parallel processing, he partitioned the simulation environment into strips of equal size. Instead
of implementing a single master list of objects, he defined each sector to have its own object list
that consisted of the pool ball objects and the section of the pool table that were located within
that partition. To deterniine if there was a collision, the ball objects needed to be compared only
against the other balls in the same sector and the edges of the pool table in that sector. This
partitioning of the battlefield greatly reduced the search space of the problem of determining if a
collision occurred because fewer comparisons needed to be made. Because the environment was
partitioned, each ball object also needed to check its location in relation to the partition edges so

that it could be passed to the next sector if it crossed a sector boundary .

Bergman’s work in 1992 combined Rizza's battle simulation program with the partitioning

technique used by Moser (2). This research led to a partitioning of the battlefield simulation
program and converted it to a parallel, discrete-event simulation. The new battlefield simulator
allowed each object to interact with other objects within its partition and to cross into a new
partition if a boundary is reached. Additionally, a sensor capability was implemented to allow the
detection of other objects from a distance, including objects that reside in adjacent sectors if they

are within the sensor range.

This research effort continues the work of Bergman and makes the Battlesim simulation more

robust by allowing the use of more complex ebjects and more complex object interaction.




1.5 Scope

The specific ebjective of this research is to develop and test a method that can be used to
model complex interaction between battlefield objects. A general model that allows the modeling
of all types of objects is analyzed, designed, and tested. The different types of allowable simulation
objects are categorized and included in the model. Categorization is necessary due to the difference

in the modeling of simple, complex, and environment objects.

The simulation wodel is designed to handle all types of battlefield objects. However. the final
implementation consists of only the demonstration of the interaction of regular simulation objects
by supporting multiple types of simulation objects and their object interactions. Environment
objects that can be supported by the model but are not implemented are terrain, weather, and
radio communicatious between the battlefield cbjects. Actual implementation of these objects is

complex and beyond the scope of this thesis.

1.6 Standards

The object model designed adheres to the standards consistent with the principles of object-
oriented simulation. The model ensures that objects used in the simulation are independent of
other simulation objects and can be designed and implemented independently of the other objects
in the simulation. Each object is designed using a "black box’ approach to the outside simulation
world. Each object knows what data it needs for input and what data it outputs. The object
interacts with the simulation support system for its input and output and is not aware of other

objects in the simulation system.

Even though a true object-oriented language is not used, the implementation follows object-

oriented prograinming principles of data encapsulation so that each abject’s information is contained

in one location.




1.7 Approach

The first step in solving this problem was to investigate the current use of object-oriented
programming and its u-e in simulation. This process consisted of a literature search and evaluation
of previous AFIT thesis efforts. Among the tapics researched were existing object models and their

applicability to the battlefield simulation problem. One particular model evaluated was the current

Software Structural Model (SSM) used by J-MASS.

Following the analysis stage, a design model was developed to model the representation of
simulation objects and their interaction. This was be done by evaluating the specific requirements
of the AFIT parallel simulation research group and applying the knowledge attained during the

literature search.

Once the model was completed, it was implemented and tested using the Battlesim simulation
program operating on a single processor. Implementing the model in a sequential simulation first

allowed testing of the actual model without the complexities added by parallel execution.

After the implementation of the model worked in a sequential programming environment, it
was modified for use in parallel execution. Conversion of the model for parallel execution did not
involve significant changes since the problem was already mapped to multiple logical processors
{LPs). Changes were required to keep objects synchronized between LPs. This model was then

tested.

The implementation was complete when tiie model was operational and te-*ed. At this point,
the Battlesim program was able to simulate interaction of objects with other types of objects. The
interaction of objects with terrain and the interaction of components in a complex object were not

tested, but can be implemented using the new simulation model.




1.8 Outline of Thesis

Chapter 2 of this thesis contains background information in the research area resulting from
a literature search of current research in the area of object-orierted simulation. Chapter 3 is
a discussion of design issues that were ~nnsidered before arriving at a final design method for
interacting objects in simulation. Chapter 4 contains the actual design of the object interaction
scheme resulting from this research. Chapter 5 contains information about the implementation of
this scheme using Battlesim. Chapter 6 contains the results of the implementaiion and testing,

conclusion about the results, and recommendations for further research in the topic.

Appendix A contains a data dictionary of the data elements of the design model and of the
data clements of the Battlesim implementation medel. Appendix B contains a description of the
new Battlesiin player structure. Appendix C is a user guide for using the model in the Battlesim
program and modifying it to accommodate new player classes and event classes. Appendix D

defines the new map object. Appendix E defines the new scenario file format. Appendix F contains

configuration control information for Battlesim.




II. Background

2.1 Intreduction

Current trends in simulation have led to the use of object-oriented techniques for modeling
real-world objects and processes. The techniques ugsed in Object-Oriented Simulation (OOS) are
somewhat new to simulation and QOS languages are being developed to provide the capabilities of

object-oriented programming for use in simulation.

The purpose of this chapter is to provide a background in the topic of object-oriented sim-
ulation and modeling as well as object interaction and collision detection. This literature review
discusses discrete-cvent simulation, object-oriented simulation, the principles of object-oriented
programming, object-oriented modeling, object interaction and the physical interaction of objects.
The information for this chapter was drawn from current literature in the areas of discrete-event

simulation, object-oriented simulation, collision detection, and Battlesim.

2.2 Discrete Event Simnulation

Discrete event simulation is a simulation paradigm that advances in time increments that
depend on the occurrence of events in the simulation and therefore has “the advantage of speed
of program execution because events are scheduled only as needed (6:167).” Events are predicted
based on the current simulation state and then saved until the simulation clock advances to that
time. A discrete event simulation can proceed by either predicting and executing one event at a
time or by predicting multiple events and scheduling them on a time-ordersd queue and removing
the earliest time event to be executed. In either of these methods, the simulation clock is always

advanced to the time that an event is scheduled to occur before the event is executed (10).




2.8 Object-Oriented Simulation

Simulations provide a model of the behavior of objects or processes that occur in the real
world. The use of simulation to model objects and processes allows modelers to obtain predictions
of the actual behavior of an object or process without requiring implementation of the real thing.
Simulation, therefore, can be a valuable cost saving tool and is used often during the design and

analysis of future systems (3:195).

BEarly work in simulation focused on controlling the occurrence of simulation “cvents™ in
time. The simulation modeler identified the states and events of the system and then defined
the conditions that caused a system to change state. This method of simulation modeling is
good for simulating processes that have well-defined states, events, and state transitions. A newer
generation of simulation methods emphasized the flow and processing of entities throngh a system.

This method of simulation is good for modeling manufacturing processes (3:195).

The newest approach to simulation modecling is the object-oriented approach. This approach
emphasizes the objects in a system and their interactions with each other. Object-oriented simula-
tion (QOS) languages are good for simulation modeling, because, as Bischak states, “It is natural
to view the real world as a set of objects that interact with each other™ (3:194). It is also easy
to map things that are not physical objects into simulation objects when modeling a system. An

example is that of a database record which, though intangible, can be modeled as an object.

0O0S languages are programming languages that use the object-oriented approach to modeling
and provide tools that are necessary for use in simulation. OOS languages place emphasis on the
objects in the system to be modelled while other types of simulation languages require the use of
predefined simple objects that cannot be modified by the modeler. QOS languages allow modelers to
create their own definition of new types of objects easily. An object-oriented simulation language

is also concerned with commuuication between objects that results in the change of state of an

11




object. Conventional simulation languages, on the other hand, emiphasize the use of function calls

to which variables are sent to have their values changed (3:195).

Object-oriented simulation software is more reusable than traditional simulation software
because objects can be reused in future simulations. Once an object is defined, its structure can
be kept in an object library and reused later to define similar objects. Objects are also easy
to maintain because all the information about the object is held in one place, within the object

definition (3:195).

2.4 Object-Oriented Programming Principles

A simulation object consists of & data type that defines the object’s attributes and the set
of operations that can be performed on that data type. Data for the objects are encapsulated,
which means that the data are accessible only through the operations that are defined on the

ubject {3:194). The data are protected frum being read or modified by other objects.

Descriptions of types of objects are called classes. A class is an object description that is
a template for the creation of objects of that type. The class is described in terms of the types
of data that are used to define cbjects of that class and the ways in which objects of that class
interact with the outside world. Objects of a given class are called instances of that class. Object

classes are stored in a library that can be used to write simulations (3:196) (27:303) (25).

Classes are defined in a class hierarchy, where some classes are subclasses of other classes. By

making one object class a subclass of another object class, objects can inherit properties of other
classes. Inheritance allows existiug objects to be easily modified to create new objects. Objects
can be retrieved from the object library and custotnized for various applications. For example, a
car object class can inherit properties of a more general class called vehicle. This simplifies the

definition of the car object class by not having to repeat the part of the definition that describes it




as a vehicle (3:196-197). Classes at a level in a class hierarchy are usable for defining other classes

at the same level or any lower level (27:303).

Polymorphism is the ability to make different objects appear to do the same thing. One
example is ‘iat of a forklift.truck object and a stacker_crane object. Each object could have the
capability to pick up something using & function called pick-up. The program determines which
function to call at run-time rather than at compile-time since the actual behavior of the function
is determined only after it is known which object is involved in the function call. Polymorphism
is also known as function overloading because the same function name is used in more than one

object class (3:199-200) (17:329).

The use of dynamic objects requires tools to create and destroy objects on demand. Creation
of an object involves execution of a constructor and must be done whenever a new object is required.
Similarly, a destructor is executed to destroy an instance of an object and must be done when an
object is uo longer uceded by the simulation. Use of ihe object creation and deletion processes
allows the simulation to use computer memory more efficiently by having space allocated only for

objects that are currently active in the simulation (3:199).

Simulation objects communicate by sending, receiving and interpreting messages. OOS pro-
cesses are the property of the objects that contain them. When an object needs to interact with
another object, it calls the required process in the other object to provoke a response. Because all
of an object’s data are encapsulated in the object, the only way the data can be accessed is by

calling the appropriate process to make the object respond and perform the required action (3:200).

2.5  Object Modeling

The actual modeling of a system into a simulation requires an understanding of all of the
objects and their interactions, since these are the key concepts in object-oriented modeling. Mad-

eling of the objects themselves is a direct mapping of real-world objects to simulated objests. The

13




simulation modeler defines the objects by determining what objects to use, the types of information
that they must store, and the operations they must perform. The modeler references the object
library to obtain tlie types of objects needed for his or her application. The simulation model is
then built using predefined-defined object classes and npplying the pnnciples of inhicritance and

sub-classes to create new and more complex ohjects for specific applications.

An example class hierarchy provided by a simulation language consists of base classes, ap-
plication support classes, and application-specific classes. Base classes are at the top of the class
hierarchy and arc general-purposc object classes that are not necessarily unique to simulation.
Memnbers of base classes are often commonly used data structures such as stacks and queues. Ap-
plication support object classes are created to be used in any simulation and can be reused iu
many applicatiou-specific problem areas. The simulation support object classcs are members of
the application support classes and may consist of simulation clocks and simulation output objects.
The lowest level in this hierarchy consists of application-specific object classes that can be reused
to solve problems within a specific application area. This level is where most simulation moacling
must take place (27:303-304). The main goal of this class hicrarchy is to create simulation classes
that are simple and highly reusable, so they can be reused and expanded to allow more complex

objects to be defined (27:304).

Sweeney prevides an advanced look at object-oriented modeling. He defines a physical model
that can be used to model actual physical objects. A physical model has mathematically defined
physical properties and holds the state of an object at a given instance in time, The environment
coutaining the physical model can have forces such as gravity, friction, and wind that act on the
objects. The object models in this environment interact with each other and apply collision forces
to keep objects from passing through each ather. The physical properties of the abjects determine

whether objects bounce or break when they collide (31:1188).

14




2.6 Object Interaction

Object interaction is the method of “how each object is going to communicate with each other
and the simulated world as well” {9:317). Objects communicate by passing messages. A message
consists of a receptor, a selector, and possibly some extra arguments. The receptor indicates the
object to which the message is addressed, the selector specifies which of the object’s operations is
selected, and the parameters may be needed for processing (17:328). For typical object mteraction,
object methods are used that emphasize object interaction rather than data manipulation. To call
a method, only the identified method of the object needs to be called, along with the event time

and event code {(27:302-307).

One of the problems in modeling the interaction of objects is determining the visibility of
objects to each other. In the following two models, objects do not know about other objects in the
simulation. The objects communicate with other objects by sending and receiving data through
local communication ports. The actual communication between the objects is handled by the

simulation system.

2.6.1 Gbject-Connection-Update (OCU) Model.  One technique v :ed for modeling inter-
active objects is the Object-Connection-Update (OCU) Model {15). The OCU model divides the
simulation domain into a collection of subsystems. Each subsystem may represent an object or
related group of objects in the simulation and is defined by the following four parts: a controller,
an import area, an export area, and the objects of the subsystem. Figure 3 shows how these areas

may represent a group of ohjects.

The controller carries out the mission of the subsystem by managing the behavior of the
objects in the subsystem and the communication between them. A controiler is able to update,
initialize, stabilize, configure, and destroy objects. A controller has no knowledge of the other

subsystems in the application.
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Figure 3. OCU model representation of an object.

The import area of each subsystem is the data input interface where vach object retrieves
the data that it needs. The import area retrieves the required information from the export area of
other subsystems when the data is requested. The data in the import area is then either directly
accessed by the objects or it is delivered to the object by the controller. The import area can be

implemented as a “procedural interface for each kind of data needed from other subsystems.”

The export area is an output interface through which data is output to other subsystems.
Data placed in the export area are available to the import area of other subsystems. The export
area can be implemented as a set ¢f data records that is loaded by the local subsystem objects or

the controller and is accessed by the import areas of other subsystems.

The objects in this model are passive and act based only on data received from other objects.

They transform received input data into cbject state data and are not aware of where the data

come from, only what data they need and that they can get it from the import area. The actions




of the objects are activated by the controller according to the mission coded in the subsystem

controller (15:17-21).

2.6.2 J-MASS Software Structural Model. Like the OCU model, the J-MASS (Joint
Modeling and Simulation System) Software Structural Model (SSM) divides the simulation objects
into smaller systems. The SSM groups objects into teams, which consist of a set of objects and the

operations that support them.

The objects are defined at three different levels: elements, assemblies, and players. An
element is the lowest-level model component, which usually represents a physical component of
a complex object, such as a tire on an airctaft. An assembly is an intermediate-level modeling
component that represents an aggregation of lower-level components such as the landing gear on
an aircraft. Assemblies may be a subcomponent of a higher-level modeling unit called a player.
A player is the high-level component that represents a class of objects that exisi as independent
entities in the simulation, such as ar aircraft. Figure 4 shows the relationship between the object

components (1:22).
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Figure 4. Object diagram for the J-MASS SSM model.




The SSM uses the Data Management Package (DMP) to manage all aspects of data access
within the simulation. The DMP uses ports to allow objects to send and receive data from other
objects. Ports are defined in the simulation model to be data channels bctween specific players.
When a player wants to output data, it executes a DMP procedure call that sets up outputs in
the port. When the port is ready, the other player removes the data from its end of the port. The
use of ports allows the data exchanges to be done locally at an abstract level without each player

needing to know the location and interfaces of the other players with which it must interact (1:20).

2.7 Physical Interaction of Objects

2.7.1 Maintaining Object Spatial Locations. When modeling battlefield simulation or
other simulations that require physical interaction between moving objects, it is necessary to main-
tain the position of all of the objects. The two basic ways of handling position maintenance is to
have the objects maintain their own position or to have an object manager that keeps track of all
of the objects’ locations. The simpler model is to allow the objects to maintain their own positions.
The disadvantage of this method is that it results in a high number of communications between

objects in order to find the spatial positions of all of the other objects.

Zeigler provides an example of an object manager by using what he calls a “space-manager”
for a robot management system. The space-manager is used to keep track of where objects are
located and with which other objects they can communicate and interact. When a robot object
moves, the object’s motion-system sends the new lccation and direction to the space-manager,
which maintains this information. The space-manager also controls communication by passing
messages only to other objects within a certain communication range. The space-manager is also

used to detect collisions between the robots (32:238).

The J-MASS SSM uses a Spatial Manager to keep track of spatial information such as pesition,

orientation, and velocity for all of the objects in the simulation. Players in the S$SM are allowed
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to update their state whenever it changes by providing their new spatial state or the change in
their spatial state since the last update (1:20). The advantage of this type of model is that all of
the spatial state information is centrally located. Additionally, the Spatial Manager can be used
to provide services to the objects, such as providing the location of other objects or the spatial

relationship between two objects.

2.7.2 Collision Detection.  Collision detection and response provide realism to simulation
because they prevent objects from moving through each other. Collision detection is the process of
determining if two simulation objects are trying to occupy the same physical space. T%e procedure

used to detect a collision depends on the type of simulation being used.

A discrete-event simulation requires that collisions be predicted as part of the process of
determining the next event for an object. This is necessary because discrete-event simulation
depends on predicted events and does not allow any real-time detection of object interaction. The
process consists of comparing an object’s position and velocity against the position and velocities

of the other objects in the simulation to determine if a collision will occur.

Collision detection in a time-driven simulation consists of periodically comparing the positions
of all of the objects to determine if two of them are occupying the same space. This is usually
done during an object's position update cycle. An object is updated and then checked to see if a

collision has occurred (34:4).

Response to a collision differs depending on the purpose of the simulation and how the
simulation objects are modelled. A collision could result in objects bouncing off of cach other,
destruction of objects, partial damage to objects, or just notification that the collision occurred.
The simulation modeler decides what the result will be. Response to a collision can be implemented
by having the objects involved in a collision send each other a collision message that causes them to
react to the collision. The collision message could contzin such data as the identity or type of object

and its weight, or any other items that could be used to calculate the result of a collision {29:66).
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2.7.2.1 NPSNET. One example of collision detection is the NPSNET system at
the Naval Postgraduate School. NPSNET is a real-time simulation program that participates in
the SIMNET distributed simulation. NPSNET uses an algorithm that constantly checks whether
a collision has occurred. As soon as a vehicle is updated. its paosition is updated and a check for
a collision is made. The scope of the collision detection search process must be severely limited
to maintain the speed of the simulation. Collision detection with fired objects such as buildings
or terrain is done only if the moving vehicle is below a threshold elevation. However. collision
detection with other moving objects must be done at all times. If the X and Y position of the
other vehicle is within a certain range, a second level comparison is made. This second-level check
calculates the actual distance between the objects. If this distance is within the bounding spheres

of the objects, then a collision has occurred (34:4).

2.8 Battlesim

The TCHSim program, used in the parallel simulation laboratory at AFIT, supports parallel
discrete event simulation by providing a simulation driver, a simulation clock, a next event queue,
and an intesface to the SPECTRUM parallel environment (12) (21). The next event queue is a
time-ordered priority queue that contains the set of events that have been scheduled. Each event

has a timne. an event type, and references to objects that are affected by the event (13).

Battlesim s a parallel discrete event simuiation program written in C that is used to simulate
the actions of objects as they move throughout a battlefield. The program is designed so that
sectors of the battlefield can be assigned to different logical processors that can then be executed

on separate processors of a paralle! or distributed computer. This section discusses the state of

Battlesim prior to this research effort (referred to herein as the “original™ version).
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2.8.1 Limitatinns of the Original Version.

2.8.1.; Simulation Players. A simulation player in this application is an object
that is being simulated. The original system was designed so that a single player class structure
could be used to represent multiple types of players by using a player type identifier. Although this
approach has worked well to support the player structures, it does require moving unneeded amounts
of “data”™ between processors for simple players that do not use all of the generic attributes. The
biggest limitation, however, is in implementing different versions of the operations for the different

player types.

2.8.1.2 Event Prediction. The Battlesim event prediction and scheduling models
assume that all types of simulation objects (player) are subject to the same types of events. The
simulation, therefore, ran all the players through the same event prediction routines. This was not
a problem as long as all the objects simulated were similar enough to have maost of the same events.
Exceptions, such as sensor detection events, were handled by checking first to see if the player had

any sensors.

2.8.1.3 Object-Oriented Principles.  The original implementation of Battlesim might
be considered more object-based than object-oriented. Objects were not fully encapsulated and

information hiding was not well enforced. Examples of these problems are listed below.

o The player objects had references to simulation sectors and player copies of themseives that

existed in other simulation sectors.
e Methods for the player existed in files not specific to the player.

¢ Entities outside the player object directly accessed data within the player without using the

proper function calls.




2.8.1.4 Implementation of Parallelism.  The original Battlesim software did not have
the capability to exchange data between multiple logical processors. This was due to the lack of a
proper SPECTRUM interface for TCHSIM and the need for the proper SPECTRUM adjustments

in Battlesim to ensure proper message passing, processor utilization, and processor termination.

2.9 Conclusion

This literature review provides a background in the arcas of object oriented simulation and

modeling. Object-Oriented Simulation (OOS) provides a natural way of modeling complex objects

by providing a direct mapping between the real world and the simulation environment. This
promising approach to simulation modeling allows for easier modeling and mo-e reuse of simulation

code.
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III. Design Issues of Interacting Objects In Simulation
3.1 Introduction

The proper design of an object-oriented simulation requires addressing many related topics.
Each of these topics must be reviewed in order to carefully plan and design the simulation sys-
tem. This chapter discusses the issues involved in the representation of objects, communication
between and within objects, keeping track of objects, and the problems introduced by parallelism
in an object-oriented simulation. Each of these topics is discussed, as well as alternatives for their

implementation.

3.2 Object Representation

Object representation is the method of defining an object in an object-oriented program.
This section discusses the representation of general simulation objects, aggregate objects, and

environmental objects.

3.2.1 General QObject Model. One of the goals in designing a simulation environment is
keeping the model general enough so that the environment can be used to simulate niany types
of objects. Although a given simulation system cannot simulate absolutely everything, it should
be able to simulate all or most objects that can occur in a given class of simulation. In the case
of this thesis, the simulation class is objects that move and interact with each other in a spatial

environment.

Objects are typically represented as a set of attributes which comprise their state, and a
set of functions or methods that allow outside entities to access, modify, or control their state.
The design of a simulation system should allow all types of simulation objects to be accessed and
handled the same way, using the same method calls for the same type of data access or notification
of events. The object-oriented programming concepts of classes, subclasses, and inheritance support

the ability of the simulation to handie objects the same way. The concept of polymorphism allows
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the same calls to be used with different types of objects for activitics or methods that perform the
same function. One of the results of being able to treat objects the same and allowing the same
calls to be used with different object types is that objects can be added to the simulation with

minimal modification to the simulation environment and support system.

In an ideal object-oriented simulation environment, objects are completely self-contained,
meaning that they encapsulate all of their attributes and control access to them with their methods.
Objects are controlled by the simulation and by other objects through calls made to the methods

of the controlled objects.

3.2.2 Aggregate Objects . Aggregate objects are simulation objects that are compased
of component objects (17:342). For example, an aircraft may be represented not only as a single
object known as the aircraft, but it may be modeled more complexly as an aggregation of objects
that make up the aircraft and interact together to make the aircraft operate. These component
objects could be a fuel system, engine system. communication system, navigation system, and other
systems that may consist of the actual components that make up those systems. The amount of
detail used to model these subsystems depends on what is intended to be simulated and studied. A

radio communication system would not be very important in a simulation that is used to study the

flight performance of a new type of aircraft, while the controls of the aircraft and their response

would be very important.

Aggregate components can either be dependent or independent of the aggregate object, The
existence of dependent components depends on the existence of the aggregate object. Independent

components can exist without the aggregate object (17:343).

Aggregate components can also be defined as being shared or exclusive components. Shared
components can be shared by more than one aggregate object, while exclusive components can be

part of only one composite object (17:343).




A simulation model must be able to represent aggregate components in at least one of the
following two ways. The components can either be represented as independent siimulation objects
that are tightly coupled. or they may be modeled as subparts to the simulation object that they
comprise and be cuntrolled by the “parent” object. Using the first method of having each component
modeled as an individual simulation object, the components can be independent of the aggregate
object. An example of independent aggregate components are planes that make up a squadron,
where the squadron is an aggregate object. The second method of modeling components as subparts
to a simulation model requires the components to be dependent on the aggregate object. The
aggregate object is the only object that has visibility to the component objects. An cxample of

this method is an aircraft and its subsystems.

3.2.8 Environmental Objects. In this thesis, an environmental object is an object that
is considered to be part of the environment where the simulation is taking place and affects ob-
jects at any location in the simulation. The objects are not typical simulation players hecause
they often cover every partition in the simulation. Some examples of environmental objects are
terrain, weather, atmasphere, electro-magnetic field, or any other object that can affect players in

a simulation.

Environment objects can be implemented in onc of three ways on a partitioned simulation.
The object can be totally duplicated in each partition, partially duplicated in each partition, or
solely existent on one partition. The method chosen for design and implementation of the environ-
ment object depends on the characteristics of the object. Objects such as terrain require a different
set of complex data for each partition and are too large to implement fully on each partition.
Therefore, it is more efficient to implement a partial terrain object on each partition, containing
only the terrain data necessary for that partition. Since the goal of using spatial partitioning is

to minimize the search space of interaction calculations and to minimize communication between
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processors, implementing an environment object on only one partition is a poor design choice if

many of the simulation objects must interact with it,

The desire to keep the simulation easy to modify makes it more desirable to design cnviron-
mental objects like any other simuiation object. This would alleviate the need to provide special

object haudlers for environment type objects.

3.2.9.1 Representation of Terrasn.  There arc two major methods used to represent
terrain in a simulation. It can be represented as a system of map coordinates with respective
altitudes referenced for each coordinate, or it can be represented as a set of polygons which represent.
pieces of the terrain. Sometimes these two methods are mixed s¢ that points from map data are

referenced together to form polygons.

Terrain as Map Data.  Terrain is most easily maintained as map data because
it is simply a table of map coordinates where each coordinate has an associated altitude. The
Defense Mapping Agency (DMA) is a common source of map data. The DMA provides Digital
Terrain Elevation Data (DTED) that is arranged in a rectangular grid and provides elevation data

for the locations correspondiag to the intersection of the rows and columns of the grid (24) (8:2-1).

The advautage of representing terrain as map data is that altitudes can be easily referenced by
using the map coordinates. The data can be sorted in a two dimensional array. The disadvantage
is that it is simply point data and requires translation to a new format to be able to graphically
display it and interpolation to determine altitudes in locations that are not at the specific points

used in the map dataset.

Terrain as a Set of Polygons. Representing map data as a set of polygons is
common when the data must be displayed graphically, since graphic display systems are designed to

handle the display of polygons. Polygon data is usually represented by a set of vertices, a normal,
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color, and a texturc. The normal, color., and texture are used to affect the appearance of the

graphical representation of the polygons.

A polygonal model of terrain can be generated from map data by joining the corners of cach
grid cell to form a non-planar rectangle and then connecting two opposite corners of the rectangle to
form two three-sided polygons. Using every gridpoint in map data to gencrate a polygonal terrain
file often results in terrain files that take up substantial memory and contain more detail than
necessary. The precision and storage requirements of the resulting polygon model can be lowered
by using only every nth grid point 1 by choosing a representative data elevation for each area of

a larger, or more coarse, grid (8:2-2).

Representation of terrain as a sct of polygons eliminates the need to calculate pieces of terrain
information for display or when checking for collision detection. The algorithm must simply check
for intersection between an object and an existing polygon. However, it introduces problems that
arc not encountered when using the regular map data representation. The problem of increased
data storage occurs since vertices are referenced more than once. The problem of referencing the
correct polygons occurs since the data must be stored differently than map data. The map method
allowed data points to be referenced directly, since data could be represented as arrays referenced

by X and Y locations, to find the altitude value 2.

3.2.3.2 Representation of Weather. Weather 13 an environmental object. that can
take the form of wind, clouds, rain, visibility or other weather conditions that can affect an object.
In simulation it is often represented as a parameter that fits into an equation affecting the perfor-
mance of an object. It is usually controlled by calculating a probability that controls the state of

the weather.

The Saber system at AFIT represents weather as a set of states. The simulation is initialized
with a forecast percentage. Weather for each section in the simulation is determined by computing

the result of a random number with a forecast percentage index. The index determines the state of
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the weather for that particular “weather period™. Weather is updated at intervals that are multiples

of simulation time periods (26).

3.3 Object Interaction

Object interaction in a simulation is the process of objects communicating with one another,
either directly or indirectly, aud possibly changing state as a result of the communication. This
communication can be direct, as in an object sending a message directly to another object or
indirect, having the simulation handle interaction that occurs due to the given states of the objects.
An example of direct communication would be a supervisor object giving orders to a subordinate
object, or an aircraft object sending a radio message to another aircraft object. An example of
indirect communication is a collision between two moving objects that is handled by the simulation
system. In this case, neither object “knows™ about the existence of the other object or sends any
messages. Communication between objects can be categorized into three different arcas: to request

a service , to provide notification that a specific event has occurred, or to provide data (19).

3.8.1 Object Visibility and Independence.  Visibility is the term used to describe whether
one object has knowledge of the existence and location of another object so that it can send it a
message or call one of its methods. Visibility not only determines which objects are “seen™ by an
object, but it also determines what object methods inside an ubject can be seen by other objects.
This section is mainly about objects being able to “see™ other objects. To establish visibility of an
object, the modeler must determine what objects need to communicate and what object data need

to remain hidden from other object,

3.39.1.1  Objects With Visibility. When objects have visibility of other objects in the

simulation, they are able to make calls to the methods of those objects. This iy the approach most

commonly nsed in object-oriented systens as described in object-oriented texts (25) (4). Normally

objects are given visibility to other objects when they are active objects that control or directly
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interact with the other objects. The controller, or calling objects, have visibility of objects that

they call.

Common approaches used to give objects visibility to other objects are through inheritance,
making one object an attribute of another, making a pcinter to one object an attribute of another,
including a header file that defines another object’s class, and passing an object in a parameter to

methods that require that object(28:23).

The disadvantage of giving objects visibility to other objects is the lack of flexibility in chang-
ing the system. When object types are added to or deleted from a simulation, the other objects

that specifically access those objects must be updated to accommodate the changes.

3.8.1.2 Objects Without Visibility. = When objects are not given visibility to other
objects in the system, they cannot access them without interacting with a control object that can
provide them a pointer to the object. Objects that do not have visibility to other objects are
normally passive and are acted upon by other objects. These objects do not need to know about
the existence of any of the other objects in the simulation. They only need the methods that allow
them to react to inputs from other objects in the simulation, to perform their own behavior, and
to provide and receive data as a result of control external to the object. If each of these objects is
self-sufficient and unaware of other objects in the simulation, the matter of adding an object to a
simulation should be a simple effort of plugging in a new object type, the event types that it takes
part in, and the prediction algorithms for these event types, without creating changes all across

the simulation.

The interfaces between each type of object may need to be defined. though, if those objects
need to interact. For examnple, the simulation must know which objects can interact with each
other. Since the objects do not know other objects are out there, the simulation must control their

interactions by predicting events and then handling the interaction that occurs due to the event.
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Therefore, each object must know how to react to a given event in the same way. For example.
during a collision, an object is told that it was hit by a given force in a given direction, and the
object must react accordingly. Unless that object has some kind of sensors, it does not know what
type of object hit it. The object can be designed so that it reacts differently to different levels of
impact. A small impact may cause a dent, or a change of direction. A larger impact may cause
the loss of performance capability, and an even larger impact may cause total destruction of the

object.

3.3.2 OQObject-Object Interaction. Simulation objects are simple objects that are being
simulated. An example of a simulation object is an aircraft that has attributes and methods, but
no component parts. Interaction results from calling one of the object's methods and the object
responding to the call. If the objects have visibility to the other simulation objects, they can

communuicate by calling the object’s methods directly.

If the objects do not not nave visibility to the other objects, interaction must be taken caie of
indirectly by the simulation. The simulation analyzes the state of the objects and causes interaction
by calling the methods of the objects that interact. Although some simulation scenarios contain
simulation events that cause multiple objects to interact at the same time, at any one instant an

object can cemmunicate with only one other object by calling one of its methods.

3.9.83 Object- Environment Interaction. Ae described in an earlier section, environment
objects are objects that represent a single object that is part of the simulation environment. This

section will discuss the issues of objects interacting with environment objects and whether this

interaction is different than the interaction between twe simulation objects. Environment objects

are omnipresent in the simulation and must consistently interact with the other simulation objects.
If the environment objects can be modeled the same way as simple simulation objects, then their

interaction can also be modelled in the same way.




3.3.8.1 Object-Terrain Interaction. The primary interactions that terrain has with
other simulation objects is collision detection with the terrain for airborne objects and terrain
following for ground-based objects. Usually terrain is a completely passi: - unchanging object that

reacts physically with the simulation objects.

Collision Detection for Airborne Vehicular Objects with Terrain. If map data
is being used to represent terrain, simply using the vehicle’s position and referencing the respective
map location will allow finding the altitude at the current X, Y location to see if the object has
collided with the terrain. The actual collision detection between the vehicle and terrain must be
determined by finding if the body of the object has intersected the plane of the local piece of terrain.
Since map data is typically poini data. the actual altitude and plaue of the local piece of terrain
must be calculated by using the corner points of the local piece of terrain. These computations are
relatively easy to do. Other consideraiions here are when an object is at the intersection of two
or more pieces of terrain. Computations must first determine which pieces of terrain are involved,
then determine the actual coordinates of each piece, and finally determine whether an intersection

has occurred.

Terrain Following for Ground Vehicle Objects. Terrain following for ground
vehicles requires the same type of computations to determine the pieces of terrain invoived, but
a different type of computation to determine how the object will be affected. The slope of the
terrain determines the orientation and roll of the vehicle as it travels across the terrain. Changes
in the vehicle's state are represented by events that must be computed to coincide with the vehicle
reaching places where the slope of the terrain changes. Determination of the change in slope will
be affected by several details. The most important of these is the incremental size of the terrain.
If the terrain is broken down into segments that are considerably larger than the object, say every
50m. then it is trivial to schedule an event every time the ground object intersects the edge of a

plane of the terrain. However, as the terrain gets broken into smaller, more exact pieces, the object




must interact more and more with the terrain. If the terrain is measured in smailer and smaller

pieces, it gets so that each wheel of a vehicle must interact with a different piece of the terrain.

The solution of this problem depends greatly on the goal of the simulation. If the simulation
is just simulating the interaction of battleficld vehicles where terrain is not part of the calculation,
it is pointless to perform calculations for every bump in the road. On the other hand, if the goal of
the simulation is to perform a performance test simulation for a particular vehicle in rough terrain.

every bump in the road can be very significant.

3.3.3.2 QObject-Weather Interaction. Simulation objects interact with weather by
calling the weather object’s methods to determine the state of the weather. The state of the weather

has an affect on the performance of the object.

3.3.4 Aggregate Component Interaction. An aggregate object has internal interactions
and external interactions. The internal interactions are between its internal components that
determine the behavior of the object. The behavior is not seen by the environment surrounding
the object, only the resulting actions or changes in behavior or state that the object makes due

these interactions.

Aggregate objects mnst have their components interact, either interral to the player or as
individual objects. The simulation mode! used here assumes that all aggregate object communi-
cation is taken care of by the object, or that the individual components be treated as simulation

objects that equally use the next event queue.

3.4 Event Handling

Events are used to represent the occurrence of interaction between objects or the change

of state of an object. The subject of event handling in discrete-event simulation concerns the

prediction of future events and then executing or reacting to the events when they occurs,
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3.4.1 Predicting Events. Predicting events is done by examining the current state of
the system and determining what future events will take place. The progress of the simulation
depends on being able to determine the next possible event that will take place. This process is
most successful when one event is predicted at a time, since the execution of an event can change

the state of the simulation and cause any other already predicted events to become invalid.

Events often represent the interaction of objects and require knowledge of other objects in
the system. For this reason, the responsibility of predicting an event needs to be given to objects

in the simulation that have visibility to be able to access the appropriate objects.

3.4.1.1 Predicting Events for Aggregate Objects. In discrete event simulation, the
modeler must decide how to handle event prediction and interaction with the next event queue,
Communication with the next event queue may either be through the main ebject or directly from
the component object. If the main object handles the scheduling of internal events, then all internal
event interactions must be passed through the main object. On the other hand, if the lower objects
handie their own interactions with the next event queue, additional intelligence must exist in these

lower objects to be able to interact with the queue.

3.4.2 Reacting to an Event.  Reacting to an event involves performing the actions required
for the event to be executed. When an event is removed from the next event queue, it is executed.

The execution of the event causes maripulation of the appropriate objects involved in the event.

3.4.2.1 Single-Object Events. The method of handling events that handle single
objects is very easy. Single-obiect events are usually internal to objects and the events simply

execute the proper simulation object methods to handle the event. Events that interact with other

objects in the simulation are handled by the event manager.




3.4.2.2 Multiple-Object Event. Events with multiple objects need to be handied
by an event manager to avoid excessive complexity within the simulation objects. The scheduled
event must contain references to all of the involved objects and then provide the interaction control
between the objects. This interaction control performs the functions of retrieving object state.
modifying their state, and calling the methods that are required to praduce the effects of the

execution of the event.

3.5 Managing Objects

As addressed in the literature review, the position and movement of objects can be maintained
and provided by a spatial manager or by the individual objects. Both of these methods have their

advantages and disadvantages.

3.5.1 Spatial Manager. A spatial manager, such as the one used in J-MASS, keeps
track of the location of all the objects in the simulation. The spatial inanager provides an easy
to use interface that provides such services as the location of objects, the nearest object, collision
detection, and object visibility. Objects query the spatial manager to determine which is the next
object that they will collide with. They know only the existence of the spatial manager, but not
the existence or locations of the other objects in the simulation. The advantage of this approach is
that each player only needs to know the existence of the spatial manager and how to interact with
it. The spatial manager, however, needs to be complex enough to be abic to determine the next

collision for any selected object.

The spatial manager needs to be updated by the objects as they change. The two ways to
handle these updates is either to get a positional update or just a velocity update. In the first case,

the objects know their actual location in the simulation. In the latter, they only know their current

speed and direction and the spatial manager determines their actual positions, as calculated by the

changes in their cours 2 and speed.




The advantage of using a spatial manager is having all of the position information in oue
location and possibly even ordered to make positional searches more efficient. The disadvantage of
using a spatial inanager is that duplicate information is maintained in the objects and the spatial
manager. Also, the spatial manager is likely to be difficult to modify when the simulation changes
to require the use of different object types and the provision of different services by the spatial

manager.

3.5.2 Object Self-Management.  Having objects keep track of their own position keeps the
object’s information encapsulated within the object. This provides for a simpler design because
object data does not need to be replicated in a spatial manager every time the object changes. All
references to the object’s location must be made by using the object’s method to retrieve the data.
The advantage to this technique is that object positional data is kept in one place and therefore
does not require constant updates to a spatial manager. The disadvantage is that each object must
be accessed individually to determine their status or the status of the simulation environment as a

whole.

3.6 Impact of Parallelism

3.6.1 Logical Processor Synchronization.  Executing a simulation on more than one pro-
cessor requires synchronization between the processors to maintain the integrity of the simulation.
In a real-time simulation, this process consists of keeping the simulation clocks on each processor
synchronized. In a discrete event simulation, this process requires the simulation on each logical
processor (LP) to wait until all of the other LP simulations have advanced to a time equal to or
greater than the local simulation clock. Synchronization must be maintained so that simulation

events across the multiple processors happen in the correct time order.

3.6.1.1 Conservative Approaches.  One method of synchronization is the Chandy &

Misra approach of not allowing a processcr to proceed until all its input channels have reached a
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time greater or equal to the time of the local simulation clock (5). This is considered a conservative
approach. In a parallel discrete event simulation, this means not taking an event off the next event
queue until all the input channels have reached a time equal to or greater than the time of the first

event on the next event queue.

3.6.1.2 Optimistic Approaches.  Titne-Warp and Rollback are optimistic approaches
to processor synchronization. They allow the simulation on each processor to proceed at its own
speed and then back up if a message is received with a time-stamp earlier than the current simulation
time. These implementations require a method to save the state of the simulation at regular
intervals so that it can be restored if needed. Depending on the characteristics of the simulation
these approaches are used in, they can also add a lot of overhead if the simulation must be backed

up and restored often (14) (22).

3.6.2 Simulation Object Synchronization. In a simulation that is divided into more
than one simulation sector, it is possible for an ohject to require visibility into other simulation
partitions due to its proximity to the boundary of its current sector. This visibility is necessary so
that interaction can take place with objects that are in other partitions, but are able to interact

with an object because they are located cloge enough to the object.

3.6.2.1 Simulation Objects. Simulation objects moving between LPs require the
addition and deletion of player copies from LPs as the objects move from one LP to another.
However, when an object is located right near a boundary, there is more than one way to implement
its visibility requirements. The object can either be duplicated on both of the LPs or it may just

be @i viei into the other LP by communicating with it.

Muitiple Player Copies. In this case, the simulation places a duplicate player

copy in the sector that now holds part of the player. The player copy is responsible for predicting

and executing . .wnts that occur in the second sector and cannot be detected by the original player
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copy. Additionally, it is possible that the occurrence of an event on one processor may nullify an

event that was predicted on a different processor.

When copies of the same object exist on more than one LP, the data in each of the copies must
be consistent to maintain the integrity of the simulation. A process must be devised to maintain
the consistency of the object copies. A method of keeping track of the other player copies must be

used so that the copies can be updated.

Increased Object Visibility. One way to provide increased visibility is to allow
an object to send messages to other LPs and have the other I.Ps respond if a certain object is
found on one of the other LPs. This method requires more communication between LPs, since
communicatior: must take place between LPs every time an event is predicted for an object that is

required to have visibility past a partition boundary.

3.6.3 Event Scheduling. When objects have multiple copies, a determination must be
made as to how events are scheduled. If the main object copy does all of the event predictions,
then it makes sense to schedule events for that object on the same LP as that object copy. But if
a subordinate object copy predicts an event, the event can either be scheduled on the same LP as

that copy, or sent to the LP of thc main object copy.

Scheduling Events on the Local LP.  The advantage of the first approach is that
the event operates on the object copy that predicted it. This eliminates excessive communication
of cvents back to the LP of the main object copy, and it allows the event to execute using the

same information and objects that were available when the event was predicted. This aliows the

execution of the event to take place on one LP. The disadvantage is that multiple object copies are

being modified on different LPs and require synchronization to ensure integrity of data.
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Scheduling Events on the Oumer Copy's LP. The advantage of sending a
predicted object back to the main object copy is that all object modification takes place on the
main object copy. The disadvantage is that the LP of the main copy may not contain all of the
data necessary to execute the event. Communication between LPs may be necessary to accomplish

execution of the event using this method.

Sending events back to the LP of the owner copy can be accomplished in two ways. The
event can either be sent immediately to the other LP or it can be scheduled locally and then sent
to the other LP when it is time for the event to execute. The second method is better for the
use of parallel simulation communications protocol because it is consistent with keeping messages

between processors in monotonic increasing order.

3.6.3.1 Environmental Qbjects.  Environmental objects must either be maintained
on all of the simulation LPs in which they reside or exist on only one LP and require communication
between LPs in order to communicate with it. If the object is maintained on multiple LPs, it can
either have full object copies on each LP or just have partial copies that are associated with that
LP that the copy is located on. The two primary concerns of the representation of these items
in a parallel discrete event simulation model are whether the objects can fit into the simulation
model like any other simulation player object and how to model them across multiple sectors and

processors.

3.6.4 Partitioning the Simulation.  The simulat‘on can be partitioned either by dividing
the objects or by spatially partitioning the environment. The best approach depends on the vbject

interaction patterns of the application.

3.6.4.1 Object Partitioning. Partitioning the simulation by dividing the object
types has the advantage of keeping all like objects on the same LI, making them easy to find. This

model wonld not require objects moving between LPs or the maintenance of multiple player copies.
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The disadvantage of this approach is that it will requirc increased communication between

LPs to detect and resolve interactions between objects that reside on different LPs.

3.6.4.2 Spatial Partitioning. Partitioning the simulation spatially is a good ap-
proach if objects interact with other nbjects in their proximity. This approach limits data scarch
by requiring the search to cousist only of objects in the local area. The disadvantage of this ap-
proach is the requirement to create and delete object copies as they move between the partitions

and the maintenance of multiple object copies.

Partitioning of Environmental Objects. Environmental objects such as terrain
must be represented on every partition of the simulation envirenment to avoid excessive commu-
nication between processors. This can be accomplished cither by representing the environmental
object in entirety on each partition or by representing only the portion of the environmental ob-
ject that corresponds directly with the partition. The decision of which method to implement will

depend on the characteristics of the environmental object, such as storage requirements.

One example that can be used to represent terrain files in partitions is that of the NPSNET
at the Naval Postgraduate School. The NPSNET uses terrain files that each consist of one square
kilometer of terrain data. NPSNET uses this method to page terrain in and out of the simulation as
a simulation object moves through its environment {33:66). However, any simulation could use this
method of terrain representation to select portions of terrain that aprly to a particular partition
of the simulation environment. Selectiveiy representing terrain in this manner reduces storage
requirements of the current terrain representation file and reduces the search space for collision

detection.

3.6.5 Transparent Parallelissn.  Communicating with another object requires visibility of

the location of the other object since its location must be known to ensure the message is sent

to the right place. One practice that greatly simplifies the implementation of simulation is to




make communication with remote objects transparent. This allows communication to take place
as usual, without the sending object “knowing™ if the receiving object is local or remote. The
aspects of finding the other object are handled by the simulation system (11:55). A common way
to implement transparent parallelism is through the use of object request brokers, which support

external message routing between objects that reside on separate processors (20:34).

3.7 Conclusion

This chapter provided a discussion of the topics cousidered in the design of the simulation

model, Chapter IV discusses the design of the model and the design decisions that influenced its

design.




IV. Design
4.1 Introduction

This chapter discusses the design of the object oriented simulation model resulting from
this rescarch. First the simulation model is defined. The design of the model is described, its

major conmponents are identified, and the execution of the model is discussed. Then a discussion

is provided of how to change the model to apply it to different simulation applications. Finally.

the design choices are discussed, as related to the discussion in Chapter III. This design is for a

spatially partitioned parallel discrete-event simulation.

4.2 Description of the Model

The model for this Simulation Support system was designed using Rumbaugh’s object oriented
desigu and analysis methods (25). The first step involved identifying all of the objects in the system

and the relationships between them. Figure 5 shows the resulting object diagram.

The model consists of the following objects: an Event Scheduler, Event Predictors, Events,
Players, Partitions, Player Containers, an Object Copy Manager and a Relationship Map. Notice
that both the Application Support System object and the Application object have Events and Event
Predictors as components. The Relationship Map object is used to map all of the relationships

between objects that are implied by dashed line object association connections in the diagram.

The Application Support System is an aggregate of objects that support a simulation. These
objects take care of all Event handling, maintaining pointers to the Players, handling updates of
Player copies, and maintaining association links between objects. The Application Support System
also has a set of Events that are used for simulation maintenance, regardless of the application.

These Events are used tc maintain consistency between object copies among different partitions,
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Figure 5. Object Diagram for the Simulation Application Support System.




The Application is an aggregate of the objects that are specific to a simulation application.
These objects are Players, Events, and Event Predictors. This is the part of the model that will

change as an application changes.

4.3 Major Components of the Model

4.3.1 The Player Qbject. A Player object is an cbject that is being simulated by the
simulation. It can be stationary or mobile, simple or aggregate, positional or environmental. Based
on the type of object, the Player object may or may not have Everts scheduled. Figure 6 shows

the object diagram for the Player object.

The Player object must have an object type, an objcct id, and its current state time as
attributes o that it can be handled by the simulation. Other attributes that are required depend

on what type of object it is.

All Player objects are required to provide object creation and destruction metheds and meth-
ods to access their attributes. They must also have the ability to save their state so that the
simulation can be rolled back to a previous time and restore the state of the simulation at that
time. The Player object must also have method= that allow it to react to Events. For example, an
object that is involved in a collision should have a method called in_collision that gets passed all
of the information that the Player needs to handle the <ollision as it affects the Player. Necessary
information incluaes items such as the mass and velocity of the other object or the direction and

force of a collision vector that has hit the Player.

4.3.2 The Event Scheduler Object.  The Event Scheduler object is an object-oriented rep-
resentation of the object that schedules the next event for a Player object. The Event Scheduler
determines the next Event for a Player object by first calling the Player to determine its next
internally scheduled event. Then the scheduler queries each Event Predictor object that is associ-

ated with the Player object to return what they predict as the next Event for the Player nbject.

43




Player Object Diagram

Figure 6. Object Diagram for the Player object.
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The Relationship Map is used to determine which Event Predictors to use. The Event Scheduler
determines the next Event by comparing the event times of the Events returned by the Player and
the Event Predictors. The Evenrt with the earliest time is then scheduled on the simulation event
queue. It is possible that no Events are scheduled for an object as a result of this process. due to

the current state of the Player objects.

4.2.3 The Predictor Object. A Predictor object is an object that predicts a specific type of
Event for a Player object. Some Predictors may predict Events for a group of closely related Event
types. The Predictor is queried by the Event Scheduler object to predict the next Event of the
Event. type that the Predictor is responsible for. The Predictor iterates through each of the Player
objects in the Player Container for the Partition containing the Player having an Event predicted.
The object type, or Player class, of each Player is compared against the Relationship Map to
determine if that Player can participate in the interaction that that Event Predictor predicts. If
the Player class is correct, the state of the Player is compared against the state of the Player having
an Event predicted to determine if and when an interaction Event will occur. The Event Predictor

returns to the scheduler the earliest time Event that it predicts.

4.3.4 The Event Object. The Event object is an object that represents an object inter-
action Event that has been predi.ct.ed to occur in the future. The Event is created by a Predictor
object, then placed on the next event queue to wait for its time to execute. Two different types of
Events are simulation application Events and simulation support Events. Simulation application
Events represent actual Players or state changes of Players that have been predicted to occur.
Simulation support Events are used to initialize Player objects, maintain Player object copies, and

maintain execution of the simulation.

The Event object has attributes for the Event time, Event type, and references to the Players
that are involved in the Event. All Events must have an Ezecute_Fvent methcd that handles the

execution of the Event. Figure 7 shows the object diagram for the Event object.
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Event Object Diagram

Figure 7. Object Diagram for the Event object




4.3.5 The Partition Objeci. The Partition object is a spatial object that represents a
three-dimensional area of the simulation environment. Each Partition object is associated with a
Player Container object that consists of the set of Player objects that exist in that partition. The
Partition object has attributes defining the limits of each Partition and methods for accessing these

attributes.

4.3.6 The Player Container Object. The Player Container object is a container object
that contains a set of Player objects. Each Player Container object is associated with one Partition.
A single Player Container object contains all the simulation Player objects that are in a particular

simulation partition.

4.3.7 The Object Copy Manager. The Object Copy Manager handles the updating of
remote object copies by sending object updates to the LPs where remote object copies reside. This
is done by checking the Relationship Map object to find the appropriate partitions where the copies

are located and then again to find the LPs where the partitions are located.

4-3.8 The Relationship Map Object.  The Relationship Map object is a group of integer to
set of integer maps that are used to map the relationships between objects. The maps can either

be static or dynamic and can be used to model any relationship between objects in the simulation

that can represent both items being mapped as integers. The modeler must set up a map and

have initialize it. The map can then be accessed and modified during the simulation. The basic

mappings that are required for operation of this model are listed below.

Player Ciass to Predictor Class This mapping maps each Player class to the set of Predictor
objects that it uses to predict the next Event for a Player from that class. This map is static
and identical on all of the LPs. Table 1 shows the relationship between Player classes and

Event Predictor classes.




Predictor Class Aircraft | Tank | Truck | Terrain
Collision Event X X X

Sensor Contact X X

Enter Sensor Range X X X

Boundary Event X X X

Route Event X X X

Ground Course Change X X

Table 1. Example Mapping of Player Class to Predictor Class

Predictor Class Aircraft | Tank | Truck | Terrain
Collision Event X X X X
Sensor Contact X X X

Enter Sensor Range X X X

Boundary Event
Route Event
Ground Course Change

Table 2. Example Mapping of Predictor Class to Player Class

Predictor Class to Player Class This mapping maps each Predictor class to the Player classes
to use from the Player Container object while predicting an Event. This map is static and
identical on all of the LPs. Table 2 shows the relationships between Event Predictor classes

and Player classes.

Player Copy to Partition This map keeps track of which partition a particular Player copy is
in. This mapping is used so that the actual Player copy doesn’t need to know about partition
objects. This map is dynamic and changes as Player cobpies are created and deleted from

partitions.

Player to Partition of Owner Copy This map keeps track of which partition contains the
owner Player copy of a particular object. This map is dynamic and changes as a Player
moves between partitions. This map is identical on all LPs that contain a Player copy of the

object.
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Player Owner to Partitions of Player Copies This map keeps track of the partitions that
contain a Player copy of an object, including the partition that contains the owner. This
map is dynamic and changes as the object moves and crosses partition boundaries. This map

exists only on the LP that contains the partition where the owner Player copy is located.

4.4 Operation of the Model

{.4-1 FEvent Handling.

4.4.1.3 Event Scheduling.  The Event Scheduler object is used to determine the next
Event for a Player. The Event Scheduler object first queries the Player object to deterinine its own
next internal Event. Internal Events involve internal components that are not visible outside the
object. On receipt of the internal Event, the Event Scheduler queries the Event Predictor objects
that are applicable to.the Player object. This relationship between the Player type and the Event
Predictor type is established and referenced by using the Relationship Map object to map the
Player object to the Event Predictor objects that schedule Events for it. Figure 8 shows the state

diagram for the scheduler object.

sclwdulc__evull

[success]/add_event

Figure & State Diagram for the Event Scheduler object

Each Event Predictor object in turn determines the next occurring Event for the Player

involved and returns this Event, or NULL if none is predicted, to the scheduler. The scheduler
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determines which of the Events has the lowest time and schedules this Event on the next event
queue. It is possible that no Events are scheduled for a Player after this sequence. Figure 9 shows

the state diagram for the Event Predictor object.

An example of this event scheduling process proceeds as follows. An Aircraft Player object
requires its next event to be scheduled. The Event Scheduler queriez the Player's method for
determining its next internal event. The Player object determines its next internal interaction
event, which in this case is a Route Point Event at time 25. The Scheduler then queries each of the
Event Predictors that correspond with the Aircraft Player. The Collision Event Predictor predicts
that a Collision Event will occur at time 23. This event preempts the Route Point Event since it
wiil occur at an earlier time. The Boundary Event Predictor predicts a Front End Object Event
will occur at time 29 to signify that the front of the Player has reached the edge of its current
Partition. This Event will be discarded since it will occur after the Collision Event. If there are no

more Event Predictors to query, the Collision Event is scheduled on the next event queue.

predict_event
(player time) find minimum

time event for
player

[success]/create_event

Figure 9. State Diagram for the Event Predictor object

4.4.1.2 Event Erecution. When an Event is taken off the next event queue, its

execule_event method is executed. Each Event type has its own ezecute_event method. The exe-
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cute.event method handles all the object interaction that occurs as a result of the Event. Figure 10

shows the state diagram for an Event object.

An example of the execution of a Collision Event proceeds as follows. The Collision Event
is taken off the event queue and its ezecule_event method is executed. The Collision Event first
updates the states of the Player objects involved in the collision. Then it obtains the state of both
Players involved in the collision by using the attribute access methods of the Players. Then the
do_collision method is executed on each Player object. The do_collision method requires parameters
such as mass, speed, and directio:n of the other player so that it knows how to react to the collision.
Once the Player objects are medified, control returns back to the Event. The copies of the Players
on remote vartitions are sent updates by using the Cbject Copy Manager. Then already scheduled
Events on the event queue involving the modified Player objects must be rescheduled to guarantee
their validity now that the states of those Players has changed. Finally, the next events for the

modified Players are determined.

Event State Diagram

e creatc_event 4d_eve ::"' get_next_event
NEQ
1ap_event
destroy_event
®

Figure 10. 3tate Diagram for the Event object

exsecute event
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4-4.2 Object Interaction.

4.4.2.1 Ezxternal Interaction.  Interaction between objects is handled by the Event
Predictor objects and the Events themselves. The erecute_event method passes pertineut informa-
tion between the Players involved and calls the appropriate methods in the Players to complete the

execution of the Event.

§-4.2.2 Internul Interaction.  This model does not specifically address tlie internal
interaction of components of an aggregate object. The model considers such internal interaction
to be handled by the Player object itself. Internal Events will be predicted by the Player object
and will be executed by the Player when they occur. The exception to this rule is if the simulation
modeler chooses to make all the internal components of an object separate objects and have their

interaction handled by the system.

4.4.3 Object Management. All objects are maintained in the Player Container of the
Partition in which it resides. All objects maintain their own position and velocity information.
The map object is used to map relationships between objects. For example, the partitions must be

mapped to LPs, and the Piayers must be mapped to partitions.

4.4.4 Handling Parallelism. Parallelism is handled by using remote Player copies and
the relationship mapping system. A Player that is in more than one partition has a copy in each
partition that it is in. The position of these multiple partitions may result in a Player having copies

on more than one LP.

The Player copy that is in the partition that contains the center of the Player is called the
owner copy. All others are simply referred to here as Player copies. Each LP has its own event
queue, which is shared betweer all the partitions on that LP. To eliminate the possibility of duplicate

predicted events, each Piayer copy can only predict Events that will occurin the partition that the




Player copy resides in. The owner Player copy is responsible for predicting all internal Events and
all boundary crossing Events. This approach assumes that a Player copy will not be large enough

to reach entirely across two partitions in width.

Once an Event is predicted, it is scheduled on the next event queuc on the logical processor
containing the partition in which it was predicted to take place. This is necessary because the
aflected Players reside on that processor, or the Event would have been predicted by the owner

processor.

The Event is executed in the partition in which it was predicted, and on completion. once
the Player position is updated, the Player sends Player updates to the owner copy, which updates
itself and sends Player copy updates to al! its copies. This sending of Player updates keeps all the

Player copies up to date with the same data.

The other problem caused by parallelism is the problem of keeping Events occurring in the
correct sequence across all the processors. For exaiaple, a Player update Event received from
another processor may cause a scheduled Event on the current processor to no longer be apprepriate

due to a change in the state of the Player object. The selution to this problem is to verify Events

before executing them to make sure that they should stili happen. This can be done by comparing

the states of the objects involved in the interaction and ensuring that conditions for the interaction
are met. An example of verifying a collision Event is to mnake sure that the two objects involved are
a minimum distance apart (zero or near-zero) at the time of the collision and arc heading toward
each other. All update Events from other processors should occur as scheduled, since the Events

that caused them have already occurred on other p s,




4.6 Changing the Simulation

The simulation object interaction is designed so that changing the s‘mulation requires min-
imum modification to the parts of the model. Modification to the simulation involves adding or

modifying Player and Event objects, as well as the Event Predictor objects that support the Events.

4.5.1 Adding Players.  Adding a new simulation Player requires adding the new Player
subclass with the appropriate methods and modifying the appropriate Relationship Maps. If the
Player requires Events that are not already part of the simulation, the simulation must also pro-
vide the Event and Event Predictor objects that are required. If thesc objects already exist, the
Relationship Maps must be adjusted to inap the new Player type to the correct Event Predictors

and map the Event predictors back to the Player.

4.5.2 Adding Events.  Adding Events requires adding in the appropriate Event subclass
ana Event Prediciors. Then the appropriate Relationship Maps must be adjusted to map Player

classes to Event Predictors and Event Predictor classes to Player Classes,

§.6 Design Decisions

This section discusses the design decisions that influenced the design of the simulation model,
as related to the discussion in the previous chapter. The issues of object representation, object

interaction, event handling. and parallelism were all an important part of the model's design.

4.6.1 Object Representation.  The representation of the objects in the simulation design
was influenced by object-oriented design and goals to make the simulation easy to modify. The
other goal was to attempt to handle all types of objects the same way in order to avoid complexity

of handling multiple types of objects.




4.6.1.1 Simulation Object Representation. In order to keep the simulation casy
to modify, all simulation objects are designed so that they can be Fandled the same way by the
main simulation. Therefore, a Player Container object for simulation objects is capable of handling
any type of simulation object. To achieve this, a single simulation object class is created that
cncompasses all simulation objects. All objects in this class must have methods to allow other

objects to access and change their states.

{.6.1.2 Aggregate Object Representation. Aggregate objects are represented as
objects that are closely coupled or as single objects that control their internal interactions, Com-
ponents of aggregate objects can be iinplemented as regular simulation objects. In this case, they
can be represented just like any other simulation object, except that there are only certain other
objects that they can interact with. The advantage of this design is that it allows for a simpler
niodel by allowing all object comniunication to be handled the same. Treating internal component

objects as a “special” case would require more complicated handling of their communication.

This simulation design also supports aggregate objects that fully control the interaction of
their components. These objects must predict their own internally scheduled Events. The advan-
tage of this approach is that all internal component interaction is handled by the object instead of
requiring the simulation system to be more complicated. No real design decision was tnade here
since the model supports both methods of implementing aggregate objects and leaves the choice of

implementation up to the modeler.

4.6.1.8 Environment Object Representation.  Environment objects are represented
like any other object, as part of the Player object class. This allows them to interact with other
objects using the same method of interaction used by the simulation objects. The problem of

how to partition an environment object among simulation partitions is independent of their basic

representation. Partitioning decisions determine whether cach LP has a whole or partial copy of




an environmental object, Regardless of the choice, the basic representation of the object and its

interface methods to the rest of the simulation are identical.

4.6.2  Qbject Interaction.

4.6.2.1 Object Visibility and Independence . In this model, simulation onjects do not
have visibility to other objects in the simulation. However, the Event objects and Event Predictor
objects do have visibility to all of the simulation objects, since they are the objects that control
the simulation. This decision was made to allow for casicr updating of the simulation when objects

are added and deleted.

4.6.2.2  Simulation Object Interaction. Interaction between simulation objects is
taken care of indirectly by the use of Event Predictors and Events. The Event Predictors determine
wheiher two simulation objects will interact. This is done by comparing the states of all objects
that qualify for a particular type of interaction to sce if an intcraction will occur. Actual operation
of this process is discussed in Section 4.4. Actual object interaction is handled by the execution of

Events. The Everts handle all calls to the objects that are involvea in the interaction.

4.6.2.3 Aggregate Object Inieruction This design supports aggregate object inter-

action of two different types. Either an object can fully control interaction between its components

and schedule these Events oa the next event quene, or each of the componenis can be represented

as a Player object and directly interact with Events and Event Predictors,

4.6.2.4 Environment Object Interaction. All interaction between the environment
and other simulation objects are handled by Events and Event Predictors. The henefit of this ap-
proach is that the Players do not need to know about the environment objects and the environment

objects do not need visibility of the Player objects. Their design is therefore independent.




4.6.3 Object Management.  The objects in this model rnanage their own positions in the
simulation. The objects themselves are managed by the use of a container object that maintains

a pointer to all objects in a given set. The advantage of allowing objects to maintain their own

simulation position instead of using a spatial manager is that it minimizes duplication of data in

the simulation and minimizes updates that must be made when data is exchanged between LPs.

4.6.4 Fvent Handling. Event handling in this model is based on the use of discrete-event
simulation. The next event for each object must be predicted and scheduled on the event queue.

Execution of Events occurs when an Event is removed from the top of ihe next event quene.

4.6.4.1 Event Prediction. Event prediction is done by a separate entity known
as the Event Predictor object. Since simulation -bjects do not have visibility of other objects,
the predictor object must have visibility of all of the objects that it can predict Events for. The
Predictor’s associations with object classes are mapped by the Relationship Map object. This design
allows all interaction of objects to be handled external to the simulation objects, decreasing the
visibility requirements of the objects. Additiorally, all references to specific Events are encapsulated
in the Event Predictors that predict those cvents. This minimizes the complexity of changes when

the application must be modified.

For aggregate objects that have internal components that are not recognized as regular ob-
jects, prediction of Events representing interaction internal to the simulation object is performed
by the object itself. This minimizes complications to the Event handling system and allows an

object to be completely encapsulated.

4.6.4.2 FEvent Ezecution.  Event execution is performed when an Event is removed
from the top of the event queue. The ezecute_event method of the Event object is executed and
handles all irteraction between the objects. This allows objects to be independent of each other,

but requires the Events to have visibility of the objects that it affects.




4.6.5 Parallelism.

4.6.5.1 Logical Processor Synchronization.  LPs are synchronized by using the con-
servative approach of requiring each LP to wait until its input channels are all at a time greater
than or equal to the time of the next event queue before allowing another Event to be removed
from the next event queue. This design is influenced for this model by the availability of Spectrum.

wliich provides this support.

"4.6.5.2  Simulation Object Synchronization. Simulation objects are copied onto all
of the LPs that they exist on. Only one of the copies is the main object, and it controls the updates
of the copies. This approach was taken to minimize communication between logical processors

during Event prediction.

Every object copy performs an Event prediction and schedules its next event on the event
queue of the LP that it is on. The Event is also executed at that same LP since the Event may
involve updating other objects that are also on that LP. After the Event is completed. each object
copy that was modified needs to update its other copies. If the copy is the main copy, it sends
updates to all of its copies. If the updated copy was not the main copy, it sends an update to
its main copy, which in turn sends updates to each of its copies. The advantage of this design is
that only the main object copy is required to maintain visibility of all the copies, while each of the

copies must have visibility to their main copy.

4.6.5.3 Simulation Partitioning.  This model partitions tlie simulation spatially. The
design minimizes the communication between processors and also limits the search space during
Event prediction. This decision was made based on the fact that most of the communication
between objects in this type of simulation is interaction with other objects located in the vicinity of

the object. Also. this method was already being used in Battlesim and had been used successfully.
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4.7 Conclusion

This chapter discussed the design of the simulation model and why certain design decisions

were made. Chapter V discusses the actual implementation of the model into Battlesisn.




V. Implementation

5.1 Introduction

The Battlesim program developed in the AFIT parailel processing laboratory is used to
implement this model. This section discusses the selection of the programming language, the

requirements for implementation, and the resulting simulation model.

§.1.1 Programming Language.  The Battlesim program is written using the C program-
ming language. and that is the programming language selected for this implementation. Analysis
during the early stages of this research determined that there was not a C++ compiler available
for the Hypercube to use C++ to supplement the current code with object support. Also, the
use of Ada would require all of the Battlesim program, including the simulation support provided
by TCHSIM and the parallel communication support provided by SPECTRUM to be rewritten in

Ada.

The € programming language is not an object-oriented language, but can produce code that
supports object-oriented principles. There are several methods to support object-oriented method-
ologies in C. Matsche presents an approach that implements object attributes within a record
structure, class inheritance through the use of #define statements to define each record structure
that is reused in subclasses, and polymorphism through the use of function pointers to methods
within the object record structure (16). The biggest concern here is support of polymorphism,
to allow the same methoa calis to be reused on different types of objects. Matsche recommends
using pointers to functions as attributes to each ob ect so that the method can be found directly
by using the player pointer. Unfortunately, the method of using function pointers to methods as
attributes of each object does not work when objects are transferred to other processes in a parallel

simulation. The memory pointers will not be accurate on the new processor.




5.2 New Battlesim Requirements

The first new requirement for Battlesim was to overcome the following limitations of the

original system:

e The system must be able to handle different types of simulation players and event types,
either in the same stmnulation or to be interchanged to be used in a different simulation with

the same simulation support system.

¢ The interchange of player types and event types must require minimum modification to the

simulation support system.

o The simulation must be made more object-oriented.
e The system must be made to execute in parallel.

An additional requirement is to allow the simulation model to support environmental ob-
jects. such as terrain and weather, again without causing significant modification to the existing

simulation model.

5.8 Battlesim Implementation

Tle simulation model was able to be mapped to Battlesim with a minimal amount of changes
to the model. However, extensive modifications to the Battlesim code were necessary in order
to implement the new object-oriented structure and the new method of scheduling and handling

events. Figures 11 and 12 show the object diagram for the new Battlesim model.

5.4 Player Implementation

The player object was implemented differently in the Battlesim implementation because C
does not support object-oriented classes easily and the design was altered to simplify the addition

of simulation objects to the simulation model. Figure 13 shows the object model for the simuiation
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implementation of the player. The main Player class contains the object type, id. time. position.
velocity. orientation, size, mass, and polygon list that are common to almost any moving object.
The subclass for any particular object coutains attributes and methods that are specific to the

object being simulated. Very simple objects may not need a subclass for their implementation.

Polymorphism is supported by having the player pointer being passed as a parameter in all
method calls. For any methods that must be used for more than one player object type, the player
object determines which method to use by checking the object type. Each ubject subclass type
must have a differently named method which gets called by the player. Typical methods that
are polymorphic are calls for creation, destruction, copying, packing and unpacking objects. File
methods.c is the Player’s polymorphic method call resolver, which checks the object’s type and uses

a case statement to call the correct subclass method.

5.5 Ewvent Implementation

Events in the Battlesim program are implemented using the event.c file to represent Event

object structure and the ez_event.c file for the execute_event method. The ez_event.c file contains a
primary ezecute_event method which uses a switch (or case) statement to select between the event

specific ezecute.event methods.

5.6 FEvent Scheduler Implementation

The Event Scheduler object is implemented in file schedule.c. The only function in this file
is del_nezt_event, which makes calls to the Player object's internal event prediction method, to thc
relationship map object, and to the event Predictor Objects. This object has no attributes and is

implemented exactly as modelled in the design.
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5.7 FEvent Predictor Implemeniation

The Event Predictor object is implemented in file predict.c. The only externally visible
function in this file is predict_event. This function’s parameters are a pointer to a player and an
event predictor type. Based on the predictor type, this function will call the appropriate Predictor

Object. This object has no attributes and is implemented exactly as modelled in the design.

5.8 Player Container Implementation

The Player Container object is implemented in file playerset.c and is modeled as a Playerset
object. The Playerset Object uses a linked list to keep tiack of the objects that it contains. This

file was not changed for this new implementation.

5.9 Partition Implementation

The Partition Object is implemented in file sector.c and is represented by a Sector object.

Each Sector Object has minimum and maximum X, Y, and Z values that define the area represented

by the Sector. Each Sector also has an associated Playerset Object. Minor modifications were made

to this file to make it more object oriented.

5.10 Relationship Map Implementation
The Relationship Map object is implemented in file map.c. It provides calls that build and
modify maps. All of the calls use from none to all of the following parameters:
Map Name The name of the map to be modified.
Map From The item that is being mapped from.

Map To The item that is being mapped to.




The following list shows the maps that arc implemented for a basic simulation. Simulation

modelers can add other map types that are needed for other applications.

PLAYER PTR_.TO_SECTOR.ID Maps a player ohject to the sector that it is in.

PLAYER ID_ TO_OWNER _SECTOR . ID Maps a player ID to the sector that its owner is in.

This is used for updating player copies.

OWNER.ID.TO_COPIES SECTOR_ID Maps the owner copy of a player to the sectors where

its cupies are located. Used for updating player copies.

PLAYER_CLASS TO_PREDICTOR.CLASS Maps each player class to the predictor classes
that predict its events. Used by the Scheduler object to determine which predictors to use

when scheduling an event for an object.

PREDICTOR_CLASS.TO_PLAYER CLASS Maps each predictor class to the player classes
that must be used for predicting a specific type of event. Used by the Event Predictors to

selectively evaluate player objects from the Playerset.

5.11 Qbject Copy Manager Implementation

The Object Copy Manager object is implemented in file obj_mgr.c. The only externally visible

function call is send_Pcopy_updates. The only parameter for this function is a pointer to the player

that has been updated. The function uses the Relationship map to find the location of the other
player copies, creates an Update_Player event, and calls send_event in file interfareB.c which makes

a SPECTRUM call to send the event to another LP.

5.12 Test Cases

The implemented model was tested againat several test cases. The first test was to ensure

that a single object conld travel throughout the battlefield across multiple sectors. The battlefield




was modeled as 8 sectors on 1 L. This test worked fine with the Player object properly executing

all of its boundary crossing events and properly updating its copies as its state changed.

The second test involved testing a single object crossing sectors on a simulation mapped onto

multiple LPs. The model used was a mapping of 8 Sectors onto 2 LPs. Once again, the simulation

worked well.

The third and final set of tests used 10 objects in a simulation mapping 8 Sectors onto 2 LPs.
This test was also a success as it allowed interaction between the simulation objects, Collisions

were properly predicted and executed between objects.

5.13  Conclusion

This chapter discussed the implementation of the simulation model into Battlesim. Chap-

ter VI discusscs the results and conclusions of the rescarch and recommendations for future research.




VI. Results, Conclusion, and Research Recommendations

6.1 Introduction

This final chapter discusses the results of the research, conclusions reached, and recommen-

dations for further research.

6.2 Results

6.2.1 The Simulation Model . The resulting object-oriented simulation model proved to
be effective when implemented into the Battlesim program. The model effectively allowed multiple
player types to be simulated within the same simulation system. Also, different object types were
allowed to utilize different event types, without interfering with the design of other objects in the
simulation. The model also is able to support environment objects such as terrain or weather,

although these types of objects have not yet been tested.

6.2.2 Battlessm Program Modification. The implenientation of the object-oriented sim-
ulation mode] into Battlesim was a major programming effort. Much of the original simulation
model had to be reprogrammed to support object-oriented standards and to support the new event

scheduling technique.

One of the lessons experienced from this research came from implementing an object-ariented
design using a non-object oriented programming language. There was much extra programming
required to implement some of the object-oriented constructs that would net have been required

had an object-oriented language been used.

The results were effective in transforming Battlesim into & much more flexible simulation
program. Although substantial program changes were required to be made to Battlesim tc imple-
ment the model, the new simulation model provided a method of adding new object types to the

simulaticn with only minor adjustments to the simulation.




The new event scheduling system allows objects to schedule internal interaction events. This
allows aggregate objects to schedule events on the event queue for their component objects. The
new event scheduling system also allows player object classes to each be assigned a certain set
of event types that apply to objects in their class. This new method of predicting evenes in the
new model made the Batdesim software more cfficient by causing the programn to only use event

predictors that were applicable Lo the object that was being predicted.

The relationship map proevides a mapping for any object to any other object. The map is
dynamically medifiable during program execution and allows objects to he implemented without
pointers to other objects. The map allows modifications for different mappings so that the simula-

tion modeler can add other maps that need to be represented in the system

6.8 Conclusions

The resulting simulation model is very effective for an object-oriented discrete cvent sim-
ulation. The model allows flexibility for maltiple types of objects and object interactions and
commmnnication between object copivs on different LPs. The model also provides the capability to

casily modify the simulaticn for other applications.

The technique of providing an Event Scheduler, Event Predictors, and allowing events to

execute themselves proved to be a promising method of designing a wmodifiable object-oriented

discrete event simulation. The model praved to successfully model the interaction between simple

objects. Since the model was designed to allow environmental objects to he modelled the same as
simple objects, the model also provides an effective approach to modelling the interaction of simple
objects with environment objects. This ability was not tested, but can be shown by implementing
terrain represented as a simple object and interacting with other objects through the use of Event

Predictors and Event objects just like those used for simple objects.




Aggregate objects can also be represented with the model. The components of ar aggiegate
object can either be implemented as simple objects that are tightly coupled to other components
or the aggregate can be modeled as a single object which maintains its component objects and

handles the interaction bevween them.

‘The simulation model is a valiG¢ approach to parallel discrete event simulation. The model
maintains communicaticn between LPs and the updates between multiple abject copies. One of
the problems encountered in the implementation of the model was how to ensure valid events on
the event queue for a particular oblect when eveats are received from object copies on other LPs.
This problem is common to any model of parallel discrete event simalation that predicts the next
event for each object individually instead of predicting the next event for anv object. This latter

method allows only one event to be predicted 2t a time and docs not need a gaeue.

Although the model proved to be successful, impleirenting the design in a non-object-oriented
language proved to be a very complicated underiaking. I do recorameund the design technique, but
only if it is {0 be implemented in an object-orient »d langnage. The ouject-oriented principles of
inheritarce and polymorphism cannct be earily rcproduced in a non-object oriented programniing

‘anguage without a complicated imlementation.

This study in object oriented simulativn is 4 good basis for understanding the problems
involved in desiyning and implementing an object otiented paidllel discrete event simulation, and
provides a valid simulation model that suppocts interaction between all types of objects. J-MASS
can usc thic document as a reference for idertifying protlems in designing a simulation model and

use the designed model as an example simulation model design.
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6.4 Research Recommendations

There is still much work that can be accomplished in the topic of this thesis. The following
lists of items are recommendations for further research in the topic and support of the Battlesim

program.

6.4.1 Further Research.

o Investigate the effects of load balancing of a partitioned simulation by modifying the parti-
tion structure if the processing load of one of the processors is bearing a significantly larger

processing load than the other partitions.

Investigate further the handling of aggregate objects. Determine if it is better for component
objects to be hidden from the simulation and handled by the player or for the simulation to

directly handle communication between the component objects.

Further study the implementation of environment objects. Many types of environment objects
can be partitioned for use in a partitioned simulation, but may not be valid if a simulation

uses dynamically changing partitions.

Further study the best method to keep parallel discrete event simulations synchronized when
duplicate objects on multiple LPs must keep each other state updated. The problem to be

studied involves choosing between taking invalid events off the event queue or verifying each

event when it is removed from the queue by ensuring that the current state of the objects

allows the event to occur.

6.4.2 Battlesim Updates.

Implement Battlesim using an object-oriented language. This would allow better use of object

classes and polymorphism.




Modify the sector to LP mapping which uses tchmap.c to use the new map system in map.c

to provide more consistency to the code.

Change the object update event to send partial updates instead of entire piayer copies. This

would lower the communication between processors during object updates.

Make the Battlesim subclass more object-oriented by taking the armaments. defenses, target

lists, and sensors out and making them into separate objects like the route.

Add an acceleration model into the player objects. The objects currently change velocity

instantly.

Modify the use of scenario files to be able to load a single scenario file instead of one for each
section. This would require a function to place an object into the correct sector(s) based
on its location and to be able to send the object to the other LPs if necessary. This would

simplify the process of generating scenarios.

Modify Spectrum to use float times for LP channel updates instead of integer times. Battlesim
events occur at float times and synchronization between partiticns may not be accurate when

objects are migrating to other processors.
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Appendiz A. Model Data Dictionary

A.1 General Model

A.L.1  General Model Objects.

Application - The Application is the part of the simulation model that contains the objects being
simulated, the event predictors that predict object interactions, and the events that support

the interactions.

Application Support System - The Application Support System provides support for a simula-
tion application. The support objects include the Event Scheduler, the Object Copy Manager,

the Object Relationship Map, and simulation support events.

Event Object - An Event object signifies the occurrence of an object interaction or the change
of state of an object. Events can be of two different types: application events and simulation
support cvents. Application events signify object interaction or change of an object’s state and
are created by an event predictor. Simulation support events are created by the simulation in
order to carry out a particular action at a particular point in time. Events maintain pointers

to the objects that they affect and have an event type that determines what actions are taken

when their ezecute_event function is called.

Event Predictor Object - An Event Predictor computes the next occurrence of a specific event

type for a given Player object.

Event Scheduler Object - The Event Scheduler determines the next event for a given Player

object by consulting all of the Event Predictors that correspond to that Player object.

Object Copy Manager Object - An Object Copy Manager manages the update of object copies
by determining the location of the copies and sending Update. Player_Copy events to the

apprepriate LP's.




Object Relationship Map Object - An Object Relationship Map maintains the mapping of

relationships between objects since the simulation objects in this model do not have visibility

of other simulation objects.

Partition Object - Arn Partition Object is a 3-dimensional partition of the simulation environ-

ment.

Player Container Object - A Player Container object is a container object that consists of a
list of objects. For this model, a Player Container Object is associated with each Partition

Object and contains a list of all of the objects located in that simulation partition.

Simulation LP - A Simulation LP is a logical process of the simulation. Each Simulation LP

consists of both Simulation Support and Application Support.

Simulation Support System - The Simulation Support System in this model supports an ap-
plication using Parallel Discrete Event Simulation. The support system implements discrete
event simulation support by providing a simulation clock and a next event queue. Parallelism

is supported by providing an interface that makes parallelism invisible to the application.

A.2 Battlesim Model

¢ Event Predictor Objects

Boundary Crossing - The Boundary Crossing Event Predictor predicts events for Player
Objects crossing the edges of sectors. This event predictor only applies to moving Player
objects in the simulatien. The Events predicted are Front End Object. Center of Object,

and Back End Object.

Collision - The Collision Event Predictor predicts collisions for certain Player Objects with
other Player objects. The predictor is only used by Mobile Player Objects that have
the capability to collide with other objects. The event predicted is Collision Distance

Reached.




Enter Sensor Range - The Enter Sensor Range Event Predictor predicts when a mobile
Player Object moves into the sensor range of another player object that has a sensor.

The event predicted is Entered Sensor Range.

Sensor Contact - The Sensor Contact Event Predictor predicts when a Player Object that
Las a sensor will L.ave another player object mave into its sensor range. The event

predicted is Made Sensor Contact.

¢ Event Objects

Back End Object - The Back End Object event indicates that the back end of an object
has left a sector. The player will be removed from that sector and all appropriate object
relationship maps will be modified to eliminate a reference to that sector as the location

of a player copy.

Center of Object - The Center of Object event indicates that the center of an object has
moved to a new sector. The Relatiouship Maps must be updated to reflect that the
owner player has moved tc a new sector and the mapping to player copies must be made

available on the LP where the owner player is now located.

Collision Distance Reached - This event indicates that a two player objects have collided.
The event exchanges information between the players to indicate the speed and mass of

the object they have collided with and the players respond accordingly.

Entered Sensor Range - This event indicates that a player object has entered the sensor
range or another player. The event notifies the player through a method and the player

respouds accordingly.

Front End Object - The Front End Object event indicates that the front end of an object

has just entered a new sector. A copy of the player must be created in the new sector
and all appropriate object relationship maps will be modified to indicate the glayer now

has a player copy in that sector.




Made Sensor Contact - The Made Sensor Contact Event indicates that a player’s sensors
have made a contact. The event will indicate the contact to the player by calling a

method in the player which will respond accordingly.

Reached Turnpoint - The Reached Turnpoint Event indicates that a player has reached
one of its turnpoints. The event will call a method in the player which will handle this

event.

Remove Player Copy - The Remove Player Event indicates that a player copy is no longer
in a given simulation sector and that it must be removed. This may occur as the result

of a player leaving a sector or a player being destroyed.

Start Player Copy - The Start Player Event indicates that a player needs to have its next
event calculated. This Event is mainly used only at he beginning of the simulation to

calculate the first event for each of the player objects.

Update Player Copy -This event indicates that the playei copy must be updated using
the player copy attached to the event. If the player does ziot exist in this sector, then it

must be created.

Player Objects

F18 - This player is a mobile player that flies throughout the simulation environment, from

routepoint to routepoint, reacting to other objects that it encounters.

MIG - This player is a mobile player that flies throughout the simulation envircnment, from

routepoint to routepoint, reacting to other objects that it encounters.

MISSILE - This player is a mobile player that flies throughout the simulation eavironment,

from routepoint to routepoint, reacting to other objects that it encounters.

TANK - This is a mobile player that moves along the terrain in the simulation, from route-

point to routepoint, reacting to the terrain and other objects it encounter.
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TERRAIN - This object is a stationary environinental! object that exists throughout the

simulation. In this modecl. the terrair does not change.

e Other Simulation Objects

wlap - The Object Relationship Map for Battlesim. Keeps track of associations between

objects.

Object Manager - The Object Copy Manager for Battlesim. Manages updates of player

copies by determining what LP object copies are on and sending Update. Player.Copy

events to those LP's.

Playerset - The playerset is a Player Container Object and contains all the Player Objects

in a given 3ector.

Sector - The secior is a Partition Object and represents a partition of the Battlesim simu-

lation enviroament.




Appendiz B. Detailed Player Object Attribute Descriptions

This appendix describes the updated Player Object in BATTLESIM by defining the attributes
of the Player object their purpose. The first section describes the attributes of the Player Class.
which is the generic player structure used for all simul~tion players in this model. The second

gection describes the attributes of the the Battlesim Player Subclass.

Note that if an attribute is not actively used in BATTLESIM, then it is marked as such; these

attributes remain to support future improvements in simulation fidelity.

B.1 Player Class Attributes

This section describes the attributes of the Player Class.

¢ Object Type - identifies what kind of icon is associated with a player when the scenario's

outpat file is displayed by the graphics display driver.

¢ Object Identifier - unique among “owned” players; however, player-copies of an owned

player will share the same object identifier.
¢ Current Time - current simulation time of the player

¢ Location - three values indicating the position of the player on the battlefield in x,y.and 2

coordinates.
o Velocity - three values indicating the player’s x,y, and z velocity vectors.
s Orientation - yaw, pitch and roll of player (roll not used in current version).

¢ Rotation - rates of changes about the x, y, and z axis". These values are not used by the

current. version.

» Player Sijze - attribute indicating the radius of the player in the same units that are used

to specify position. This 13 used to make collision detection more realistic.
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Player Mass - attribute indicating the mass of the player. This is used to make collision

respouse more realistic.

Battiessm Player Subclass Attribules

This section describes the attributes of the Battlesim Player Subclass,

Object Loyalty - a number indicating which objects are friends and which are foes. Objects
with the same number are friends, and will not attack cach other. Objects with different

numbers are foes, and may attack one another.

Fuel Status - value indicates how much fuel the player has left. Not used in the current

version.

Condition - value indicating how badly damaged a player is. Not used in the current version,

since an object is alway either fully operational or completely destroyed.

Vulnerability - specifies how strong a destructive force is required to destroy the player.

Not used in the current version.

Operator - two values indicating the experience and threat knowledge of the operator of the

player object. Not used in the current version.
Performance - four characteristics of the player not used in the current version. These
characteristics include:

1. max spced

2. minimum turn radius

3. average fuel consumption rate

4. max climb rate

¢ Route Data - a pointer to the route list.




e Sensors - a pointer to the linked list of the sensors owned by a player. The characteristicy
of a sensor include:
1. sensor type (not uscid by current version)
2. sensor range
3. sensor resolution {not used by current version)
¢ Armaments - a poiuter to the linked list of the armaments owned by a player. The charac-
teristics of an armament include:
1. type (used by missiles only)
. range (not. used by current version)
. lethality (not used by currcnt version)
. accuracy (not used by current version)
. speed (not used by current version)
. count (not used by current version)
¢ Defensive Systems - a pointer to the linked list of the defensive systems owned by a player,

It is not used by the current version. The characteristics of a defensive system include:

1. type
2. range

3. effectiveness

o Target List - a pointer to the linked list of targets for the player. The characteristics of a

target list include:

1. type

2. location (not used by current version)
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Appendir C. Simulation Mode! User Guide

Thix section provides instrnctions on how to add new Players and Events to the spmulation

miondel.

.1 Adding New Player Types

C.l 1 Modifred Fries To add new Plages types 1o the sumubation  wodihe atingns must be

miade to the following hies.

player.h This tle st be changed ) assign the vew Playee type o umern valu

subclass.c and subclass.h The syt dass fles wiust be adde ! o provide the stiucture aned meth
ods for the new Plaver subclios For example the subiclass hles for Battbesin e bs.pluyer o

and ba_playrr.h.

methods.c The methodsan this hle must be updated to be able to handle calls to the new Player

subelaxs,

init_maps.c This file must be changed to associate the new Player type to the Event Predictor

classes that it iy associated with and associate Event Predictor classes to the new Player type.

scenario flles The modeler must create a new format for che new Player subclass and generate

scenario files. (Only necessary if the subclass has its own data structure.)

C.1.2 Reguired Methods. New Players are required to have variations of the following

methods detined:

new_subclass Allocates space for the subelass structure and returns a pointer to the new subclass.

(Only necessary if the subclass has its own data structure.)

free_subclass Frees space oeeupied by a subcelass structure. (Only necessary if the subelass has

its own data structure.)




read_subclass Reads in data from the scenario file to the subelass structure. (Only necessary if

the subclass has its own data structure.)

list_subclass wists the datain the subclass data structure. (Only necessary if the subclass has its

own data structure.)

pack_subclass Packs the data of the subclass data structure into newly allocated contiguous
memory and returns a pointer to the memory. (Only necessary if the subclass has its own

data structurc.)

unpack _subclass Unpacks data from coutiguous memory into a subclass data structure and re-

turns a pointer to the structure. (Only necessary if the subclass has its own data structure.)

subclass_packsize Determines the memory required to pack a subclass data structure. (Ouly

uecessary if the subclass has its own data structure.)

det .subclass_internal_event Determines the next internal event for the particular Player sub-
class  For example, the Battlesim Player uses this to predict route events. (Only necessary if

the subclass schedules events.)

C.2 Adding New Events

Adding new Events to the simulation requires modifications to the following files:

ex-event.c The proper “execute.cvent” method must be added to this file and the polymorphic

ezecute.event method must be updated to handle it.

ex.event.h The new Event type must be assigned a numneric designator,

predict.c The proper “predictevent” must be added to this file and the method predict_event

must be updated.

predict.h The new Event Predictor type must be assigned a numeric designator.




init_maps.c This file must be changed to associate each Player class to the Event Predictor classes
that it is associated with and associate each Event Predictor to the Player classes that are in

its scarch space.

C.3 Example Implementation of a Pool Ball Simulation

This example will describe how the sitnulation can be wmade to simulate a set of pool balls
bouncing around a pool table. The balls arc able to bounce off of each other, as well as the sides
of the pool table. The pool table will be partitioned just as the battlefield was. Each Sector object
will thercfore represent a different portion of the pool table. Figure 14 shows an example Pool Ball

simulation.

R

Figure 14. Example Pool Ball simulation.
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C.3.1 Description of the New Objects.  The objects involved in the pool ball simulation are
pool balls and the pool table. The only Events required for this simulation, besides the simulation

maintenance Events, are Boundary Crossing Events and Collision Events




C.3.1.1 The Pool Balls.  The pool balls will be modeled as spheres with a certain
size and mass. The attributes for the pool balls can be implemented using the standard simulation
class provided in file player.c. Each ball can be represented using the size and mass fields in the
Player structure which arc entered as part of the scenario file. No polygons are necessary for

collision detection since these are regular shaped objects.

C.3.1.2 The Pool Table. In the simplest model, the pool table can be implemented
as a set of planes. Since the balls do not react to gravity, the bottom plane of the table does not
need to be modeled. What does need to be represented is the sides of the pool table, because the
pool balls must interact with them as a Collision Event and bounce off of them. The easiest way
to do this is to represent each of the sides of the pool table using a plane equation, providing A4, B,
C, and D for the equation Ax + By+ Cz+ D = 0. Since the sides of the pool table arc square with
the Cartesian coordinate system, this will result in the four sides being represented as (1,0,0,-L),
{1,0,0.-R}, (0,1,0,-F), and (0.1.0,-B), where L, R, T, and B stand for left, right. front, and back.
The representation of each side must exist in the scenario file once for cach Sector that the side
must reside in. Each of the sides must have an X, Y, Z location in the main player class that is set
to a value within the range of the Sector it resides in. Otherwise, it will not be represented in the

correct sector.

C.3.2 Adding the New Objects. This section will step through the actions required to
implement the new objects. Each file to be modified is listed, as well as the changes that must be

made.

player.h This file contains the assignments of numeric values to Player types. It must be modified
so there can be a numeric representation of a Pool Ball object and a Pool Table Side object.

Example addition to the file:

#define POOLBALL 6
#define POOL_TABLE_SIDE 7
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subclass.c and subclass.h The Pool Ball object requires a subclass file that contains a method
that handles its reaction to a collision, but does not require a subclass data structure since
all of the necessary attributes are available in the general Player object class. The collision
handling method must be able to take in the parameters that describe the impact and change

the state of the Pool Ball as a result of the impact.

The Pool Table Side object requires a subclass file that contains its attribute data structure.
This subclass does not need interaction methods. Since it has a data structure it must have
the required methods to handle the data structure. These include versions of the following

methods:

new_subclass()
freesubclass()
read subclass()
listsubclass()
pack_subclass()
unpacksubclass()
subclass_packsize()
pack_subclass()

These methods must be given names that are unique in the simulation. An example would be
new.PTahleSide_subclass. Even though the Pool Table Side object will not be moving between
partitions, the pack and unpack functions are still required. This requirement is needed to
support the simulation’s capability to save its state and return to an earlier simulation time.

All object structures must be able to be packed.

methods.c The methods in this file must be updated to be able to handle calls to polymorphic

methods in the new Pool Ball and Pool Table Side subclasses. The collision handling method
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in the Pool Ball subclass must be added in the 2zecute.collision method. The Pool Table Side
does not need to have an entry in the Ezecute.Collision method as long as the default ertry
performs no action. Additionally. all of the Pool Table Side object's subclass data structure

handing methods must be added.

init _maps.c If only one Event Predictor object is used to model both Ball-Ball collisions and
Ball-Side collisions, then this file must be changed to associate the Pool Ball Player type
with the Boundary Event and Collision Event Predictors. Also, the Collision Event Predictor
must be associated with both the Pool Ball Class and the Paol Table Side Class. This is so
the Predictor will evaluate the state of objects of both of these Player classes when checking
for collisions. It may be desirable to implement the Event Predictors for the two types of
collisions separately. In this case, there would be a separate Event Predictor of Ball-Ball and

Ball-Side collisions.

scenario files Since the Pool Table Side object requires an additional data structure for its sub-
class, the modeler must design an input format for the subclass and a method for reading it
in. The best way to do this is to use a one-line format immediately after the line used for the

main Player object,

C.3.3 Addition of the New Events. Assuming the Boundary Events and the Collision
Events already exist, no new events are required. The Event Predictor for the Collision Events

must be modified to handle Ball-Side collisions. It may be easier to develop a separate Event

Predictor for each type of predictor. The following modifications must be made for implementation

of the Events and Event Predictors of the Pool Ball Simulation:

ex_event.c and ex_event.h Since no new Events are introduced, these two files do not require

changes.
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predict.c The det.collision_event must be modified to handle two different sypes of collision. The

first method involves predicting the collision of two spheres while the second involves predict-

ing the collisien between a sphere and a plane.
predict.h Since no new Event Predictors are needed, this file does not require changes.

init _naps.c This file must be changed to associate the Collision Event Predictor class with the

Pool Ball class and the Poo! Table Side class.




Appendiz D. The Map Object
D.1  Introduction

This appendix describes the Map Object that was created d-iring this thesis. The Map Object
contains mappings of an ioteger to a set of integers. The Map Object uses the linked list support

in l.¢ to create linked lists. File map.h is used to define the maps that are used.

D.2 Map Structure

The data structure for the Relationship Map object consists of an array of pointers to maps.
Each map consists of a linked list of items that are mapped from. Each of the items that are mapped
from consist of linked list of items that they are mapped to. All linked lists are implemented using
the linked list facility in file ll.c. Each linked list consists of headers that point to list nodes. Each
list node is a lic. placeholder that has a pointer to a data element and to the next list element if

one exisls. See Figure 15 for a pictorial represeutation of the map system.

The following code displays the structures used in the Relationship Map object:

static void *map[MAX_MAP_TYPE + 1];
typedef struct {

int mapfrom_id;

void =mapping_11;

void =last_read_mapto,;
} mapfrom_type;

typedef int mapto_type;

D.3 Methods

D.8.1 Public Methods. The following methods are public and available external to the

map.c file. They are made available through the use of file map....
new_Maps Initializes all the Maps by creating the list headers for each one.
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Figure 15. The data structure reprasentation of the Relationship Map

set_Mapping Adds a mapping for a particular integer in a particular map. NOTE: This function

allows an integer to be mapped to more than one other integer.

reset_Mapping Replaces all of the current mappings for an integer in a map with a single new

mapping.

get first_ Mapping Gets the first mapping for an integer in a map. Returns an integer.

get_next Mapping Gets the next mapping for an integer in a map, assuming no interim accesses

were made to the map. Returns an integer.

is Mapped Detcrmines whether a mapping exists in a particular map. Returns TRUE or FALSE.

del_Mapping Removes a particular mapping from a map.




del_object_Mappings Removes all of the mappings for a particular integer in a map.
show_all_Maps Shows the contents of all maps.

pack Mapping Packs a single mapping and returns a pointer to the packed mapping.
get_packed _Mapping size Gets the size of a packed mapping.

unpack_Mapping Unpacks a mapping and puts it in the map on the current LP. The packed

mapping is freed.
show_packed_Mapping Show the contents of a packed mapping
pack Mapset Pack the entire set of maps. Returns a pointer to the packed maps.

record_Mapset Records the current Mapset. Used by state saving process to pack the set of

maps.

restore_Mapset Restores a recorded mapset.
clesr Mapset Clears the cntirce set of maps.
free_packed _Mapset Frees a packed set of maps.

show_packed _Mapset Show the contents of a packed set of maps.

D.3.2 Private Methods.  The following methods are not available externally to the map.c

file. They are not made available by file map.h.

new_mapfrom Creates a new mapfrom structure and initializes its attributes. The mapfrom

structure consists of an integer that is being mapped from and a pointer to a linked list of
items that it is mapped to. It also contains a pointer to the last mapto item in the list that
was accessed. This pointer is necessary to be able to iterate through the list using the method

gel_nezt.mapping.

new._mapto Creates a new mapto structure and initializes its attributes. The mapto structure

consists of an integer that is being mapped to.
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free_mapfrom Frees a mepfrom data structure.
free.mapto Frees a mapto data structure.

mapfrom_is_equal Used for calls to the ll. delete, l_contains, aud llindez_dats methods of file ll.¢

to compare a mapfrom data node against an entered integer.

mapto_is_equal Used for calls to the ll_delete, ll_contains, and ll.indez_data methods of file ll.¢ to

compare a mapto data node against an entered integer.

D.{ Map Setup and Operation

D.4.1 Map Setup.  The first requireinent to setting up the Relationship Map is to setup

the define 1 Map Types in file map.h.

[rernnnperperekntntekrrek MAP TYPES sxrixakpsasstisstsssessasssrds
* IMPORTANT: MAX_MAP_TYPE must be >= largeat defined MAP_TYPE .
* and all MAP_TYPES MUST BE different. *

Aok kR ROk R R R R R R R Rk RSk R R a R p R p i 0/

#define PLAYER_TYPE_TO_PREDICTOR_TYPE 1
#define PREDICTOR_TYPE_TN_PLAYER_TYPE 2
#define PLAYER_PTR_TO_SECTOR_ID 3
#define PLAYER_IU_10_OWNERS_SECTOR_ID 4
#define PLAYER_ID_TO_COPIES_SECTOR_ID €
#define MAX_MAP_TYPE §

JHAERERRAREEEREERRE AR R R RN R RERER R RARRERRRAR R LR TR w2 [

The five map type listed above are required for the basic operation of the simulation system.
New map types can be added, but notice that the variable MAX_MAP_TYPE must be adjusted accord-

ingly. IMPORTANT: The map system is implenented so that space will be allocated and maps

initialized for map IDs in the range 0 to MAX_MAP_TYPE, so plan your numbering system accordingly.




D.4.2 Map Initialization.  All of the maps are allocated space and initialized throngh the
method init_Maps in file init_maps.c. This method makes a call to new_Mapa to set up the maps

and then uses the other Map uic...ods to load the maps with initial values.

D.4.3 The Three Player Qbject Position Maps . The three Maps used for maintaining

the Player objects in the simulation are listed below:

¢ PLAYERPTR.TOSECTORJD
¢ PLAYERID.TO.OWNERSSECTOR.ID
¢ PLAYERID.TO.COPIESSECTOR.D

Tie PLAYER.PTR_TO_SECTORID map is used to maintain the relationship between each
copy of a Player object and the ID of the Sector object that it resides in. This map must be
maintained for each copy of a player, using the Player’s pointer as the map-from value and the

Scctor ID as the map to value in the Map mcthod calls,

The PLAYERID.TO.OWNERS_SECTOR.ID map is used to maintain the relationship be-
tween a Player ID and the ID of the Sector that the owner copy of the Player resides in. Only one
copy of this mapping is maintained on each LP that a Player Object has copies on, therefore this
mapping is not deleted when a Player leaves a sector, in case the Player has copies in other Sectors
that are on the same LP. A mote complex implementation would determine if it is safe to delete
the mapping by checking the other sectors on the same LP to see if they contain a Player object
with the same ID. This map can be used to determine if a copy of a Player object is the owner
copy by comparing this mapping against the PLAYER PTR.TOSECTORJID map to see if they

are equal.

The PLAYERJID.TO.COPIES.SECTOR.ID map is used to maintain the relationship be-
tween the owner copy of a Player abject and its other copies. This is done by mapping the Player

ID of the Player to the Sector ID of the Sectors that cantain copies of the Player. ‘Thig map is
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maintained only on the LP that contains the owner copy of the Player. This map aust be trans-
ferred between LPs with the ownership of the Player. This map is primarily used to update Player

copies when the owner copy changes.

94




Appendiz E. Scenario Input File Format

E.1 Introduction,
This section describes the format and attributes for a scenario input file.

To allow for the simulation of multiple types of ubjects, the structure of the scenario file
needed to be changed. The oid scenario file provided the capability to read in a single type of
object. The goal in the design of the new scenario file was to support most of the old design to

cnable the reuse of code, and to allow for the addition of other object types.

The new design centers around the use of a single data line used for all types of objects,
followed by further data lines that are dependent on the type of object that is being entered.
The first data line contains data that is common to all types of simulation objects and fills the
attributes of the simulation object superclass. The following lines contain data that are rclevant
to the subclass defining the object. The function of reading in a player from the scenario file has
been moved to the player, which reads in the first line, and then calls the method that reads in the

subclass data.

E.2 Scenario Input File Formal.

The format for scenario files with the “.ind’ extension is shown below. Attributes which
existed in the previous version of BATTLESIM and have not changed format are merely listed
— additional information on their purpose can be obtained fram Soderholm's thesis(30:3-5). New
attributes added io support spatial partitioning, as well as old attributes with a new format, are

explained in detail.

E.2.1 The Header Section.




e Version Number - A chamcter attribute indicating what version this file is, If the file
version doces not match that expected by BATTLESIM, then an error message is returned to

the user and the run terminates,

Terrain Data Filename - A character attribute that indicates the name of the terran data
file to be used for this simulation run. This file contains terrain elevation data which currently
is unused by BATTLESIM. However, this was added to support modeling of terrain at a later

timne.

Terrain Min Coordinates (x,y,z) - Three double attributes which provide the minimum
X. y. and z axis coordinates of the battlefield. Standardized terrain data files use minimum

values of zeroa.

Terrain Max Coordinates (x,y,z) - Three double attributes which provide the maximum
X, y. and 2 axis coordinates of the battleficld. Standardized terrain data files use maximum
valt 3 of 117,000 for the x-axis and 118,000 for the y-axis. A maximum of 1000 is used for

benchmark scenario files in the z-axis.

Number of Sectors - An integer value indicating the number of sectors to be used in the

scenario. The value must be greater than 0 and less than 65 to be valid.

Sector min/max Coordinates - Double values which contain each sector's winimum x/y/z

coordinates and maximum x/y/z coordinates, in that order. Each line contains six entries
containing the boundary information for a particular sector, with the lines appearing in order
from the first to the last sector. Therefore there are exactly as many lines in this section as

there are number of sectors.

Number of Icon Definitions - An integer value specifying how many icon definitions exist.
This value is always five now, since five different types objects can be created in the scenario.

This information, while it previously existed. was hard-coded into BATTLESIM.




¢ Icon Definitions - Two attributes, an integer and a character, which together uniquely

describe an icon definition needed to support creation of the display driver datafile using thc

format previously defined by DeRouchey (7). The five definitions used by current version of

BATTLESIM include:

— Type 1 - 18

— Type 2 - migl
— Type 3 - missile
— Type 4 - tank

— Type 5 - truck

E.2.2 The Player Class Section.  This information, while it previously existed, was hard-

coded into BATTLESIM.

¢ Player Class Attributes - Fourteen attributes, all residing on the same line in the scenario

file, which provide information about a particular player in the scenario, no matter what its
Object Type. The attributes, in order, are:

. Object Type

. Object Identifier

. Current Time

. Location (x-component)

. Location (y-component)

. Location (z-component)

. Velocity (x-component)

. Velocity (y-component)




. Velocity (z-component)
. Orientation (yaw rate)
. Orientation (pitch rate)
. Orientation (roli :ate)

. Object Size

. Object Mass

E.2.3 The Player Subclass Section. The Player Class Section is defined differently for

each type of object being simulated. The simulation modeler is responsible for designing the Player

Subclass Section of the scenario file and providing the code to properly read the data and then
return control to the player class to be able to read in the next line of data. The Player Subclass
Section begins on the line following the Player Class Section and goes as long as is necessary to

read in a subclass.

The format for the Battlesim Player Subclass Section is provided below:

¢ Battlesim Player Su.class Atiributes - Ten attributes, all residing on the same line in

the scenario file, which provide information about a particular Battlesim player’s subclass
data in the scenario, to supplement the data in the Player Class Section. The attributes, in
order, are:

. Object Loyalty

. Fuel Status

. Condition

. Vulnerability

. Operator (experience)

. Operator (threat knowledge)




7. Performance Characteristics (minimum turn radius)

8. Performance Characteristics (max speed})

9. Performance Characteristics (average fuel consumption rate)
10. Performance Characteristics (max climb rate)

¢ Number of Route Points - An integer value specifying how many route points there are

in the player's route.data linked list.

¢ Route Points - Three double values indicating the x,y, and z coordinate of one of the player’s
route points. The points are listed in the order the player goes to each of them. Each line in
the file contains exactly one route point, so there are as many lines as there are route points.
NOTE: All players that use routes are given their first route poiat as a starting location,

regardless of the information used in the Location attributes in the Player Class section..

e Number of Sensors - An integer value specifying how many sensors there are in the player’s

sensors linked list.

¢ Sensors - Three integer attributes indicating the type, range, and resolution of one of the
player’'s sensors, respectively. Each line in the scenario file contains one sensor, so there are

as many lines as there are sensors.

¢ Number of Armaments - An integer value specifying how many armaments there are in

the player’s armaments linked list,

e Armaments - Six integer attributes indicating the type, range, yield, accuracy, speed. and
count of one of the player's armaments, in that order. Each line in the scenatio file contains

one armament. so there are as many lines as there are armaments.

e Number of Targets - An integer value specifying how many targets (by type or location)

are in the player’s targets linked list.




Targets - One intcger indicating the type, and three double values indicating the x, y, and z
coordinate of one of the player's targets, in that order. Each line in the scenario file contains

one target, so there are as many lines as there are targets.

Number of Defensive Systems - An integer value specifying how many defensive systems

are in the player’s defensive_systems linked list.

Defensive Systems - Three integer values indicating the type, range, and effectiveness of
one of the player's defensive systems, respectively. Each line in the scenario file contains one

defensive system, so there are as many lines as there are defensive systems.

NOTE: Since every Battlesim Subclass player in a scenario must have at least one route point
it is starting at as well as trying to reach, no player will have an empty route list at initialization.
However, any of the other four player linked lists may be empty. In that case, the linked list in

question would have no lines in the scenario file to describe it other than the number attribute.

E.3 Ezample Battlesim Scenario File
E.{ Benchmark Scenario 13.

This scenario was designed to run with 8 LPs, so 8 scenario files are required to support it.

However, sin<. the scenario files for LPs 1 through 7 are identical, only one of them is shown. The

required MAP iile is next, foliowed by a diagram depicting the movements of all the players during

the entire course of the scenario. This scenario was designed to ensure that a player could correctly
cross sector boundaries in the +x, -x, +y, and -y directions in the same scenario using all three

boundary-crossing events. The plane flies a zig-zag pattern to accomplish this.

E.4.1 Scenario Files.

FILE: bench130.inb6

AUTHOR: Capt Seth Guanu

DATE: 17 Nov 93

DESCRIPTION: This file contain: 1 plane description. Designed to make
sure that aircraft are properly replicated when passing from
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one sactor to another on DIFFERENT LP’a. This file is

intended for LP 0. In this particular scenario ome aircraft is

started on sector 1 and flies through all sectors. Each LP

has exactly one sector assigned to it (smee battlesimi3.ma). -
This benchmark was specifically designed to check for proper ’ >
scenario execution when players cross sector boundariaes in o
the +x, -x, +y, and -y directions. The plane flies » zig-zag
pattern in the x-axis first through all sectors, and then it
flies a zig-zag pattern in the y-axis direction through all
sectors.

s 4 % 4 & 8 8 8 8

*980
* version number

V5.0

s terrain data filename

terrain.10

* terrain min coordinates (x, y, 2)
0.10.10.1

* terrain max coordinates (x, y, 2)
117000.0 118000.0 1000.0

* pumber of sectors (must be < 64)

8

* sector min/max bounduries (x,y.z values in order from ist to last sectors)
0.1 59000. 0.1 29250. 118000. 1000.
29260. 69000. 0.1 58500. 118000. 1000.
686500. 59000. 0.1 AR7760. 118000. 1000.
87760. 59CUO. 0.1 117000. 118000. 1000.
0.1 0.1 0.1 29250. 59000. 1000.

29260. 0.1 0.1 68500. §9000. 1000.
58600. 0.1 0.1 87750. 58000. 1000.
87750. 0.1 0.1 117000. 59000. 1000.

* number of icon records

118 e
migl "
missile

tank

truck

Playsr Object

16000 100000000 1 2000 -
111111111 =
numbar of route points

13

¢ route coordinates x,y,z (start to finish order)

8775. 110133.33 500.

108225. 110133.33 §00.

108225. 7866.87 500.

8775. 7866.8T 500.

8776. 102266.67 500.

20476. 102266.67 500.

20475. 19888.G7 500.

438765. 19666.87 500.

43875. 102268.87 500.

T73126. 102288.87 500.

73126. 19666.87 500.

98625. 19686.87 500.

96625. 1022668.67 500.

* number of sensors

== NBWN -

5860 1
nurber of armaments

srmament descriptions (if above - 0)
number of targets

W H 6O @ o=

target descriptions (if above > 0)
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* number of dofensive systems

0

= defensive system descriptiona (if above > 0)
= END OF OBJECT
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e FILE: bench131.inb
« AUTHOR: Capt Seth Guanu
= DATE: 17 Nov 93
* DESCRIPTION: This file coatains 0 plane descriptions. Designed to make
sure that aircraft are properly replicated when passing from
one sector to ancther on DIFFERENT LP’a. This file is
intended for LP 1. In this particular scenario one aircraft is
started on sector 1 and flies through all sectors. Each LP
has exactly one sector assigned to it (see bactlesimi3.ma).
This benchmark was specifically designed to check for propar
scenario execution when players cross sector boundaries in
the +x, -x, ¢y, and -y directions. The plane flies a zig-zag
pattern in the x-axis first through all sectors, and then it
flies a xig-zag pattern in the y-axis direction through all
sectors.

2 8 8 B & 0 % 8

# version number

¥5.0

» terrain data filename

tercsain.10

¢ terrain mia coordinates (x, y, =)
0.10.10.1

¢ terrain mex coordinates (z, y, 2)
117000.0 118000.0 1000.0

= number of sectors (must be < 64)

8

* sector min/max boundaries (x,y.x values in order froa ist to last sectors)
0.1 69000. 0.1 20250. 118000. 1000.
29250. 69000. 0.1 58500. 118000. 1000.
§8500. 59000. 0.1 G7780. 118060. 1000.
87750. §9000. 0.1 117000. 118000. 1000.
¢.1 0.1 0.1 292650. §9000. 1000.

29250. 0.1 0.1 58600. §9000. 1000.
§85N0. 0.1 0.1 87750. 59000. 1000.
87750. 0.1 0.1 117000. 69000. 1000.

*» number of icon records

218

nigl

nissile

tank

truck

END OF OBJECT
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E.4.2 Map File.

FILE: battlesimi3.map
AUTHOR: Capt Seth Guanu
DATE: 17 Nov 93
DESCRIPTION: This file contains the battlesim sectur-to-LP description
for benchmark scenario 13. The BATTLESIN application muat
be executed with 8 LPs to use this particular map file.
Each lina describes a single mapping from a single sector ID
to a single LP id, in that order. There should be exactly
a3 many lines as there are sectors from the scenarioc file(s)
being used for a given simulation run.

® % 5 & 86 % & B 8 8 = 8

ssseessse
Mepping sector 1 to LP
0

Mapping sactor 2 to LP
:apping seactor 3 to LP
Mapping sector 4 to LP
:-ppin; sector 5 to LP
:lpping sector 6 to LP

Mapping sector 7 to LP

»
1
»
2
.
32
.
4
.
5
L
66
.
76
.
8

Mapping sector 8 to LP
7




E.4.8 Scenario Disgram. This diagram depicts the movement of all eight players in

benchmark 13 throughout the course of the scenario.
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Figure 16. Benchmark Scenario 13
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Appendiz F. BATTLESIM Configuration Guide

Software Files.

The software files supporting the current version of BATTLESIM, listed in alphabetical order

for quick reference, include the following:

appstru.h

application.h

battle.c and battle.h
be_player. ¢ and bs_player.h
cube2.c and cube2.h

dli.c

ex.event.c and ex.event.h
filters.c

globals.h

icon.c

init.maps.c

intcrfaceB.c and interfaceB.h
ll.c and ILh

Ipman.c

map.c and map.h
methods.c

myfilters.c

objectungr.c and object_mgr.h
player.c and player.h
playerset.c and playerset.h
predict.c and predict.h
procl.arcs

protocol.c

route.c and route.h

rt_pt.c and rt_pt.h

sector.c and sector.h
simfunc.c and sim_func.h
simread.c and sim_read.h
sim.stru.h

tchmap.c
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e terrain.c

e use_visit.c

e scenario files

o schedule.c and schedule.h
o map files

¢ Makefile

The functjonal description of each of these software files is provided in the next section.

F.2 Functional Description.

application.h - This file contains conditional compilation *defines’ which pass on information

¢ NUM_PRQOCS - he number of LPs, not nodes, which a run will use. This value musi match

|
|
to BATTLESIM. Fields of interest include:
the number of LPs specified to the ‘host’ program when executing a scenario, or else the run

will abnormally terminate.

o INPUT.ARCS - the file specifying the SPECTRUM communication arcs between BAT-
TLESIM LPs. A file must be specified, even though it is not actively used, because SPEC-

TRUM requires it.
o MAXTIME - specifies a run’s maximum allowsble execution time in seconds.
app.stru.h - Contains structure definitions common to the use of the Battlesim subclass.

battle.c - Battle.c, formerly known as rizsim.c. It contains the functions necessary for
the simulation driver to interface with the application. The following function are performed in

this file:

¢ simulation initialization
» scheduling initial player events

o starting and stopping the user’s screen output
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battle.h - Header file for battle.c.

bs_player.c and bs_player.h - The files containing the object-based definition of a BAT-
TLESIM player subclass. All the methods necessary to retrieve. modify. and delete all the fields in

a Battlesim player subclass without knowledge of the player's underlying structure are kept here.

cube2.c - This file contains all the Intel Hypercube specific functions necessary to support
BATTLESIM. It is the lowest level of communications between LPs in the ‘layered approach’
implemented by BATTLESIM. Soderhoim’s message-passing protocol - comprised of the runc-
tions nodesend.one.message and node getoneanessage — is kept in here. His approach bypassed

SPECTRUM to make direct calls to the Hypercube.

cube2.h - This file defines Intel message types, and contains a table definition which maps
the LP identifiers to the Hypercube node and process numbers. This tells each node process how

to send a message to any other LD,

dlLc - This package is very similar to Capt Rizza's linked list package, except this package
was designed by Capt Soderholm to support doubly linked lists, i.e. linked lists with both hcad

and tail pointers so it can be traversed in cither direction.

ex_event.c - Contains the ezecule.cven! method for each of the simulation events and the
ezecute_event function that determines which of them are used base on the type of the event passed
in..

ex.event.h - Contains the numeric identifiers for Event Object types.

filters.c - anoiher SPECTRUM file supposedly describing the various time synchronization
protocols used by BATTLESIM. There currently are none. The only SPECTRUM file that appears

to reference this file is the Makefile itself, but it is kept because the ‘user interface’ utility builds

this file for any provided filter set (12). The actual filter filc for BATTLESIM is myfilters.c.




globals.h - SPECTRUM supports only one type of message for transferring information from
one LP to another. This event-type structure definition is storcd within this file. and contains at

least the following fields:

1. a message time-atamp

2. the event type

3. line number over which it is sent

4. identifiers of the source and destination LPs (12)

While additional state information fields specific to a given application can be added as long as no
existing fields are changed or deleted, BATTLESIM currently adds no fields of its own. However.

since this definition is used throughout SPECTRUM., all SPECTRUM software files should be

recompiled if this file is modified in any manner.

icon.c - An object-based icon management package developed by Mr. Rick Norris. It utilizes
a linked list to hold all the icons used to represent players in Battlesim, tracking both their number

and name.

init_maps.c - Contains the method init_Maps that initializes the maps in the Object Rela-
tiouship Map object in map.c.

interfaceB.c - The BATTLESIM version of the SPECTRUM file interfacei.c. This file
acts as the “link" between the BATTLESIM application and the lower-level SPECTRUM and
Hypercube-specific functions, by containing ull calls to the encapsulated lower-level structures
(12:12).

interfaceB.h - Contains the function protocols for methods that ar= available in interfaceB.c.

ll.c and lL.h - A linked list package designed to support LIFO, FIFO, and priority queues

containing any kind of data structure desired. This package is used extensively to huild and

maintain several BATTLESIM structures, including the six linked lists contained within the ‘player'
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definition and the buckets in the playerset’s hash table. The file 11.h contains the declarations for

the functions in 11.c.

lp_man.c - Contains the code implementing the SPECTRUM logical process manager, which
is both application and machine independent. The LP m:anager maintains the input queue of
messages from other LPs in simulation time-stamp order. BATTLESIM only uses the initialization

functions.
map.c and map.h - Contain the object-based definition of the Relationship Map object.

methods.c - Contains the polymorphic methods used to access player subclasses. It provides

coutrol over which exact method is called based on the type of the Player Object.

myfilters.c - the SPECTRUM file which actually holds any ‘filters’ used. There are currently

ne filters used by BATTLESIM.

object.mgr.c and object_mgr.h - Contain the methods required to manage the updating

of player object copies on remote LPs.
player.c and player.h - The files containing the object-based definitior: of a Player Object.

All the methods necessary to retrieve, modify, and delete all the fields in a Player Object without

knowledge of the player’s underlying structure are kept here.
predict.c and predict.h - Contain the object-based definition of the Event Predictor Object.

procl.arcs - LPs in SPECTRUM communicate via unidirectional lines known as arcs. This
file tells SPECTRUM which LPs communicate with each other, i.e. it describes BATTLESIM's
communications ‘network’. Even though this file contains no entries which are actively used, SPEC-

TRUM still requires it to exist.

playerset.c and playerset.h - The files which contain the object-based definition of a BAT-
TLESIM playerset, presently implemented as an open hash table with buckets composed of linked

lists. All the methods necessary to retrieve, modify, and delete the playerset without knowledge
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of the playerset’s underlying structure are stored here. The user should refer to Appendix B for a

complete listing and description of these methods.

protocol.c - This file implements the conservative time synchronization algorithm used by
BATTLESIM. The components previously used to support the optimistic time synchronization

protocol have been removed.
route.c and route.h - Contain the object-based definition of a route.
rt_pt.c and rt_pt.h - Contain the object-based definition of a route point.
schedule.c and schedule.h - Contain the object-based definition of the Event Scheduler.

sector.c and sector.h - The two files which hold the object-based definition of a BAT-
TLESIM sector. The sector “con.ainer” object, a 64-eniry entry. is also here. All the methods used
to retrieve, modify, and delete the fields in the sector via th- 5. or arra; without knowledge of

the underlying structures are kept here. The user can see a complete listing of all sector methods,

along with their associated descriptions. in Appendix B.

sim_func.c and sim func.h - One of two main BATTLESIM application files. It contains

application-specific functions which are independent of the Hypercube and | PECTRUM.

sim.read.c and sim._read.h - These files contain the furctions which read the data from an
LPs scenario file, and store it in the appropriate location. For route points, it reverses those read

80 they are stored in reverse order as required.
sim_stru.h - This file contains the structural definition of a BATTLESIM player.

tchmap.c - A TCHSIM file which contains an object-based impi mentation of an object-
to-LP map. Each map consists of a set of object instances to logical processes. This is used by

BATTLESIM to track sector-to-LP assignments.

terrain.c - An object-based implementation of a terrain file, used to let BATTLESIM know

certain required battlefield characteristics like minimum and maximum battlefield coordinates.
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use_visit.c - This file acts as an interface to VISIT, the visual graphics driver program
designed by Capt DeRouchey to display graphics output files created by BATTLESIM. Specifically,
it contains functions which generate records in the grap cs file to start VISIT, stop VISIT, and

change the visual status of players.

scenaric files - These files, whose names end with a .ind extension, are used to convey

battlefield and player state information associated with a given battlefield scenario. Each LP must
read a scenario file during initialization. That scenario file may be designed for use by only one

LP, or may in fact be shared by multiple LPs.

map files - Each BATTLESIM scenario requires that a map file, whose name begins with
the .map extension, be provided describing the sector-to-LP assignments. Since this assignment
is static for the duration of the sceuario, so any player entering a sector owned by a given LP is

controlled by that LP while in the sector.

Makefile - This file provides an automated means of compiling and linking all the software

files necessary to execute BATTLESIM. The current Makefile is contained in Appendix E.

F.3 Makefile

The following Makefile shows the compilation order and dependencies of the Battlesim code.

SRREREERESILRRER Makefile for BATTLESINM s#&
Make battlesim by Hartrum
08/12/93

01/31/92 - Now using standard /usr/simulate/spectrum/afit/cube2.h
01/28/92 -~ Added sium_read.o

06/04/92 - Replaced neql.o/neql.c with neq_sod.o/neq_sod.c

06/04/92 - Removed event.c - it was unused.

06/24/92 - idded interfacex.c and tchsim/clock.o

07/10/92 - Added BATTLEPATH and BATTLEOBJS, changed to new baselins..
07/13/92 - Added icon.c & terrain.c to battlesim; changed executable
name from "rizsim" to "battlesim"

07/14/92 - Changed cube2.h path to spectrum

07/16/92 - Added soderstuff.c

07/17/92 - Modified path to usea baseline host2.c

Removed rollback.* and soderstuff.e

Changed rizsim.® to battle.»

Changed interfacex.* to interfaceS.e

07/25/92 - Removed events.c

Added playerset.c
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7/30/92 Bergrman repliced all refersnces of interfaceS to interfaceB
(interfaceB = interfacel + spectrum calls)
7/30/92 Bergman removed sll references to -DSODER_PROTOCOL
(to bypass round-robin aircraft-LP allocation and msg passing)
7/30/92 Bergman removed protocol.c/protocol.o entirely, and removed
existing referances to protocol.h (none)
7/30/92 KOTE: This architecture should be run with MULTIPLE input files
to ensure each node loads only what it is supposed to have!
8/04/92 Bergman added player.c to file
1/11/93 Bergnan/Vanflorn changed mnyfiltera.c/o to chanclocks.c/o,
and removed filters.c (this file now incorporated into each
individual filter file)
7/10/93 -~ Bartrum - Changed chanclocks.c to tchsimclocks.c
7/22/¢3 <~ Bartrum - Changed to link tchmap.o from TCHPATE instead of
compiling it.
8/12/93 - Hartrum - Changed include path for use_visit to VISITINCL.
10/01/93 - Trachsel ~ added map.c, ex.event.c, init_maps.c, predict.c,
schedule.c, removed sensor.c, modifiad battle,event,sector,sim_func,
sim_read

L B B B BE B IR B B B BE BE BN B BN IR B N BN

SpecOBJS = cube2.0 lp_man.o tchsimclocks.o

TCHOBJS = tchmap.o neqgd.o svent.o sim_cntrl.o

Riz0BJS = dll.o 1l.0

BATTLEOBJS = sim_func.o sim_read.o battle.o terrain.o icon.o use_visit.o
prlayer.o plagerset.o sector.o map.o ex_svent.c init_maps.o predict.o
schedule.o routs.o rt_pt.o methods.o bs_playcr.o object _mgr.o

SODERDBJS = interfaceB.o

RizLIB = -1m

AFITPATH = /usr/simulate/spe-trum/afit

AFITINCL = /usr/simulate/specirum/afit/include
BATTLEPATH = /usr/simulate/battlesim/source
BATTLEINCL = /usr/simnlate/battlesim/source/include
BERGPATH = /usr2/eng/kbergman/batlsin

FILTERPATH = /usr/simulate/spectrum/filters
NEWPATH = /usr/simulate/battlesin/new

RIZPATH = /usr/simulate/rizeim

SODPATH = /usr/simulate/rizsim/soderholm

TCHPATH = /usr/simulate/tchsim

TCHIHNCL = /usr/simulate/tchsim/include

UVAPATH = /usr/simulate/spsctrum/uva

UVAOLDPATH = /usr/simulate/spectrum/uva/old
VISITPATH = /usr/simulate/cubevisit/souxce
VISITINCL = /usr/simulate/cubevisit/source/include
WGTPATH = fusr2/eng/wtrachse/thesis/src

NEWDUG = /usr/sizulate/battlesim/new/looney
WORKDUG = /usr2/ang/dlooney/bin

BATOBJS = battoge.o & simutils.o

DEFCOMM = -DDEBUG_OXN -DMAIN_CODE

BINPATH = /usr2/eng/dlooney/bin

DUGPATH = /usr2/eng/dlooney/cube/source

DCLPATH = /usr2/eng/dlooney/tchaim

VISITINCL = /usr2/eng/dlooney/hostdir/include
VISITPATE = /usr2/eng/dlooney/hostdir

IPSC2LIBS = -1lsocket /usr/local/lib/AFIT comc.a
IPSC2FLAGS = -DIPSC2 -I/usr/inclade -I$(VISITINCL)

all: visithost battlesim
visithost: $(BATOBJS) ${VISITPATH)} /host3.c

cc -0 visithost -i${WGTPATH} -I$(VISITINCL) -I$(AFITINCL) $(BATOBJS)
${VISITPATH}/host3.c $(IPSC2LIBS) -host

battlesin: $(Riz0BJS) ${TCHPATH}/simdrive.o tchmap.o 8{TCAPATA}/clock.o
${WORKDUG}/neqA .0 $(SpecOBI3) $(BATTLEOBJS) ${SODEROEIS} event.o sim_cntrl.o
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cc ~o battlesim $(Riz0BJS) §{TCHPATH}/simdrive.o tchmap.o
${TCEPATE}/clock.o ${WORKDUG)/negA.o §(Spac0BJS) sim_cntrl.o
$(R:zLIB) $(BATTLEOBJS) ${SODERGBJS} event.c -node

sim_func.o: ${WGTPATE}/sim_stru.h ${BATTLEINCL}/11.h ${WGTPATH}/sim_func.c
${NGTPATE)} /battle.h ${VGTPATH}/application.h ${WGTPATH}/map.h
${WCTPATH}/glotals.b

cc -¢c -~IS{WGTPATH} ~I${BATTLEINCL)} ${WGTPATHE)}/sim_func.c

sinm_resd.o: ${WATPATH}/sim_stru.h ${WGTPATH]}/player.h ${BATTLEINCL}/route_pt.h
${BATTLEINCL}/sin _read.h S{VGTPATE}/sim_read.c ${WGTPATH}/application.h
${WGTPATH}/globals.h

ce -¢ -IS{VGTPATR} -I${BATTLEINCL} -I${SODPATH} ${WGTPATH}/sim_read.c
battle.o: ${WGTPATA)}/sim_stru.h ${WGTPATH)}/battle.h ${WGTPATE}/interfaceB.h
${WGTPATH}/ex_event .h ${WGTPATH}/applicaticn.h ${WGTPATH}/AFITcom.h
${WGTPATE}/battle.c

ce ~c¢ ~I${VGTPATE} ~I${BATTLEINCL)} ${WGTPATH)}/battla.c

terrain.o: ${BATTLEPATH}/terrain.c

cc ~c ${BATTLEPATH)}/terrain.c

icon.o: ${BATTLEPATE}/icon.c
¢c ~c ${BATTLEPATH}/icon.c

sector.o: ${WGTPATH}/{map.h} ${NGTPATE}/sim_stru.h ${BATTLEINCL}/route_pt.h
${WGTPATH}/sector.h ${NGTPATH}/sector.c
cc -¢ ~I${VGTPATH} -I8${BATTLEINCL} ${WGTPATH}/sector.c

player.o: ${WGTPATH}/sim_stru.h ${WGTPATH)}/methods.h ${WGTPATH}/player.h
${WGTPATH}/player.c
cec ~¢ ~I${WGTPATH} -I${BATTLEINCL} -I${SODPATH} ${WGTPATH}/player.c

bs_player.o: ${WGTPATH)}/aim_stru.h ${WGTPATE)}/app_stru.h ${WGCTPATH}/bs_player.h
${WGTPATH}/route.h ${WGTPATH}/ex_evant .h ${WGTPATE}/player.h
${NGTPATH)}/ba_player.c

cc ~¢ -I${VGTPATE} -I${BATTLEINCL} -I${SODPATE} ${NGTPATH}/bs_player.c

mathods.o: ${WGTPATE}/player.h ${WGTPATH}/bs_player.h ${NGTPATE}/methods.c
cc -c ~T${WGTPATE)} ${WGTPATH}/methods.c

object_mgr.o: ${WGTPATE}/player.k ${WGTPATH}/interfaceB.h ${WGTPATH}/map.h
${NGTPATH}/ex_event.h ${WGTPATH}/object mgx.c
cc =c -I${WGTPATH} ~I${BATTLEINCL} -I${SODPATH} ${WGTPATH}/cbject.mgr.c

route.o: ${WGTPATH)}/route.bh ${WGTPATH}/player.h ${BATTLEINCL}/sim_resd.h
${WGTPATH}/route.c ${WGTPATH}/xt_pt.h
cc ~¢ -I${WGTPATH} -I${BATTLEINCL} ${WGTPATE}/route.c

rt_pt.o: ${NGTPATH}/rt_pt.h ${WGTPATH}/rt_pt.c
ec -c ~I${WGTPATE} ${WGTPATH}/rt_pt.c

1l.0: ${WQGTPATHE}/11.h ${BATTLEINCL}/route_pt.h ${WGTPATH}/11.c
cc -c -18{WGTPATH)} -I${BATTLEINCL} -I${SODPATH)} ${WGTPATH}/1l.c

map.o: S{WGTPATH}/11.h ${WGTPATE}/map.h ${WGTPATE}/map.c
cc -¢ -I${WGTPATH)} ${VWITPATH}/map.c

init_maps.o: ${WGTPATH}/ex_event.h ${WGTPATH}/predict.h ${WGTPATH}/player.h
${VNGTPATE} /nap.h ${NGTPATH}/init_maps.c
cc -c¢ ~I${WGTPATH} -I${BATTLEINCL} ${WGYPATH}/init_maps.c

ex_event.o: ${VGTPATE}/sim_stru.h ${WGTPATE}/player.h ${NGTPATH)}/playerset.h
${BATTLEINCL)}/sector.h ${WGTPATE}/sin_func.h ${BATTLEINCL}/message.b
${NGTPATH)}/ex_event.h ${WGTPATH}/AFITcom.h ${WGTPATR)}/map.h
${WGTPATR}/ex_event.c

ce ~c ~I§{WGTPATH} -I1${BATTLEINCL} ${WGTPATE}/ex_event.c




predict.o: ${WGTPATR}/player.h ${WGTPATF}/playerset.h §{BATTLEINCL}/sector.h
${WGTPATH}/sim_func.h ${WOTPATH}/interfaceB.h ${BATTLEINCL}/route_pt.h
${WGTPATH}/ex_event.h ${WGTPATH}/predict.h ${WGTPATE}/map.h
${NGTPATB}/predict.c

cc ~c¢ -T${WGTPATH} -I${BATTLEINCL} ${UGTPATE}/predict.c

schedule.o: ${WGTPATH}/player.h ${WGTPATH}/battle.h ${NGTPATH}/map.b
${WGTPATE}/interfaceB.h ${VGTPATH}/achedule.c
cc -¢ ~I8{WGTPATH} -I${BATTLEINCL)} ${WGTPATE}/schedule.c

cube2.0: ${AFITPATH}/cube2.c ${WOTPATE}/application.h §{WGTPATH}/globals.h
${AFITINCL}/cudbe2.h
cc -¢ -I§{WGTPATH} -I${BATTLEINCL} -I${APITINCL} ${AFITPATH}/cube2.c

event.o: ${WGTPATH}/event.h ${NGTPATH}/event.c
cc -¢ -IS{WGTPATH} ${WGTPATH}/event.c

battogs.o:
cc $(IPSC2PLAGS) -c -IS{WGTPATE} $(VISITPATE)/battoge.c $(IPSC2LIBS)

use_visit.o: ${BATTLEINCL}/sim_stru.h ${BATTLEINCL}/battle.h
${DUGPATH}/use_visit.c

cc $(IPSC2FLACS) -c -IS{NGTPATH} -~IS{BATTLEINCL} -I${VISITINCL}
${DUGPATH)}/use_visit.c

lp_man.o:${DCLPATH}/1p_man.c ${WGTPATE)}/application.h ${WGTPATH}/globals.h
¢c —¢ -I${WGTPATH)} -I${BATTLEINCL} ${DCLPATH}/1lp_man.c

tchsimclocks.o: ${DUGPATH}/tchsimclocks.c ${BATTLEINCL}/application.h
${BATTLEINCL}/globals.h
¢c -¢ -I${WGTPATH} -I${BATTLEINCL} ${DUGPATH)}/tcksimclccks.c

playersat.o: ${BATTLEINCL)}/route_pt.b ${BATTLEINCL}/sim_stru.h
${WGTPATH}/playerset.h ${WGTPATH}/playerset.c
cc ~¢ ~I8{WGTPATH)} -I${BATTLEINCL} -I${SODPATH} ${WGTPATE}/playerset.c

# SODEROBJS -
% 1 modified these TCESIM OBJECTS -

neqh.o: ${DCLPATH}/neq.c
cc -¢ ${DCLPATE}/neqh.c

tchwap.o: ${DCLPATE}/tchmap.c
cc ~¢ ${DCLPATH)}/tchmap.c

sim_cntrl.o: ${BATTLEINCL}/il.h ${BIFPATH}/ll.o0 ${SODER0BJS}

${DUGPATH)}/sim_cntrl.c
ce ~¢ -I${WGTPATH)} -I${BATTLEINCL} -I¢{VISITINCL} ${DUGPATH}/sim_cntrl.c

# SODEROBJS -

interfaced.o: §{TCHINCL}/tchsim.h ${WGTPATH}/application.h ${WGTPATR}/glcbals.h
${WGTPATH}/event.h ${BATILEINCL}/nessage.h ${WGTPATH}/player.h
${UGTPATH}/ex_event .h ${WGTPATH)}/interfuceBb.c

cc ~¢ -I§{WGTPATH} -I${TCEINCL} -I${BATTLEINCL)

=1/usr/fac/hartrun/tchasin/ver2 ${WGTPATH)}/interfaceB.c

dll.o: ${SODPATH}/dll.c
cc ~¢ ~I${SODPATH} ${SODPATH}/d1l.c
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